Multivariable Vector: Gradient @ particular speed - Find Rate

MJSemper
Gold Member
Messages
8
Reaction score
0

Homework Statement


Given: Concentration of Fluid = F(x,y,z) = 2x^2 + 4y^4 + 2*x^2*z^2 at point (-1,1,1)
Found Grad(F(x,y,z)) = <-8,16,4>
----If you start to move in the direction of Grad(F) at a speed of 8, how fast is the concentration changing?

Homework Equations



Already found the gradient ... = < 4x+4xz^2, 16y^3, 4*x^2*z >
...at point (-1,1,1) = < -8,16,4 >

The Attempt at a Solution



I know that the gradient is the direction of greatest change, and its magnitude is the particular rate thereof. What I'm stuck at is how the "speed of 8" plays in there. Is it a scalar value to the magnitude of the gradient vector?

I know |grad(F)| = sqrt(336)
--do I take the Unit Vector of the gradient and multiply it by the scalar 8?
 
Physics news on Phys.org
I guess you should calculate \frac{dF}{dt} = \nabla F \cdot \frac{d\mathbf{x}}{dt}
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top