Sleepycoaster
- 17
- 0
I've already tried this problem but yielded an impossible answer:
We have a pulley with a mass-less rope attached to two masses hanging off each side of the pulley:
-m1 (4kg), suspended 1m off the ground
-m2 (2kg), on the ground
The mass (M) of the pulley is 2.6 kg
The rotational friction of the pulley is given as .51 Nm
The radius of the pulley is .085
How long will it take for the 4kg mass to hit the ground once the masses are released?
Moment of inertia (I) = (1/2)(mass)(radius)2
Torque (τ) = (moment of inertia)(angular acceleration)
Angular acceleration (α) = acceleration of point on outside edge of pulley / radius
I defined moving the pulley so that m1 falls as "positive" rotation and angular acceleration.
Regarding mass one,
Fnet = m1g + T1 = ma
T1 = m1a - m1g
For mass two,
Fnet = - m2g + T2 = ma
T2 = m2a + m2g
τnet = I α
τ(from tension) - τ(from friction) = ((1/2) M r2) (a / r)
T1r - T2r - .51 = (1/2)(2.6)(r)(a)
T1 - T2 - .51/r = (1/2)(2.6)(a)
m1a - m1g - m2a - m2g = 1.3a
a(m1 - m2 - 1.3) = m1g + m2g
a(4 - 2 - 1.3) = 39.2 + 19.6
a = 84
An acceleration greater than the acceleration due to gravity would be impossible for mass one.
Would any please check what I did wrong? Thank you!
Homework Statement
We have a pulley with a mass-less rope attached to two masses hanging off each side of the pulley:
-m1 (4kg), suspended 1m off the ground
-m2 (2kg), on the ground
The mass (M) of the pulley is 2.6 kg
The rotational friction of the pulley is given as .51 Nm
The radius of the pulley is .085
How long will it take for the 4kg mass to hit the ground once the masses are released?
Homework Equations
Moment of inertia (I) = (1/2)(mass)(radius)2
Torque (τ) = (moment of inertia)(angular acceleration)
Angular acceleration (α) = acceleration of point on outside edge of pulley / radius
The Attempt at a Solution
I defined moving the pulley so that m1 falls as "positive" rotation and angular acceleration.
Regarding mass one,
Fnet = m1g + T1 = ma
T1 = m1a - m1g
For mass two,
Fnet = - m2g + T2 = ma
T2 = m2a + m2g
τnet = I α
τ(from tension) - τ(from friction) = ((1/2) M r2) (a / r)
T1r - T2r - .51 = (1/2)(2.6)(r)(a)
T1 - T2 - .51/r = (1/2)(2.6)(a)
m1a - m1g - m2a - m2g = 1.3a
a(m1 - m2 - 1.3) = m1g + m2g
a(4 - 2 - 1.3) = 39.2 + 19.6
a = 84
An acceleration greater than the acceleration due to gravity would be impossible for mass one.
Would any please check what I did wrong? Thank you!