Need help with a generalized formula for factoring

AI Thread Summary
A user is seeking a generalized formula for the factorization of X^n - Y^n, specifically looking for the second term after factoring out (X - Y). They have deduced a complicated formula involving the summation of X*Y but find it challenging for inductive proof. Despite suggestions to use polynomial long division, the user emphasizes their need for a general formula applicable to any value of n. They express frustration over not finding existing references online. The discussion highlights the importance of identifying a standard formula for the second term in the factorization process.
Jacob Chestnut
Messages
21
Reaction score
0
Hello,

I’ve come upon a problem in my transitional mathematics course, wherein I need to prove a generalized formula for the factorization of X^n-Y^n where the first term is
(X-Y). I have deduced a formula making use of the summation of X*Y over the range of positive integers ending at n, but this formula seems over complicated and hard to work with in an inductive proof. I’d post my solution but I’m unable to use the mathematics display software that I see some people using.

I’ve taken a look on google and I can’t seem to find any mention of this general formula, so I’d like it if someone could point me to the standard formula so I can check my work before getting into my proof.

Thanks in advance,
Jacob
 
Physics news on Phys.org
Try using long division of the polynomial by x - y.
 
Thanks for the advice, but that’s not really what I need to know.

It’s really easy to figure out what the second term is for a specific value of n, but I’m trying to find a general formula for a general value of n. The pattern is even easy to see, but I want to know if anyone knows of a general standard formula for the second term as a summation from 1 to n.
 
Jacob Chestnut said:
Thanks for the advice, but that’s not really what I need to know.

It’s really easy to figure out what the second term is for a specific value of n, but I’m trying to find a general formula for a general value of n. The pattern is even easy to see, but I want to know if anyone knows of a general standard formula for the second term as a summation from 1 to n.

But you can do the long division for general n! You will find that the second factor (after dividing by x -y) is a geometric series.
 
I'm sorry; I’m not familiar with a geometric series in two variables. Would the multiplicative factor in this case be x^(-1)*y?

Thanks for the help,
Jacob
 
x^n - y^n = (x-y)\left(x^n + x^{n-1}y + x^{n-2}y^2 + \cdot \cdot \cdot + x^2 y^{n-2} + x y^{n-1} + y^n\right)
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top