Newtonian particle problem with air resistance

RawrSpoon
Messages
18
Reaction score
0
Hey guys, first time poster but I'm a physics major and probably going to stick around for a while to help people or get some help myself :P

Anyway, on to the problem!

Homework Statement


A particle is released from rest and falls under the influence of gravity. Find the relationship between v and falling distance y when the air resistance is equal to γv3


Homework Equations


F=ma=-mg+γv3


The Attempt at a Solution


I've been able to solve this same problem for γv and γv2 but I can't seem to find an easy way to find
∫dv/(-g+v3)=t+C without Mathematica giving me an incredibly complex answer.

I don't want hand-outs, I want to solve this myself, but I don't have any idea where to go with this. Any tips on what I should be looking at to attempt a solution?
 
Physics news on Phys.org
A difference of cubes will factor. So you might want to define a constant b so that you can write your denominator as v^3 - b^3.
 
I'm unsure how that would work? Should I define b as being the cube root of mg so I end up having

m*dv/(v^3-b^3)? I'm not sure how I would integrate from there.
 
That integral is available in standard tables (e.g. CRC). It's messy but it's a closed-form expression. Have you tried to apply it to your integral? BTW in your integral the coefficient for v3 should be γ/m, not that that's a show-stopper. Also, I would choose y > 0 for t > 0 (just a sign change).

The problem doesn't ask for v(t), it just asks for the relationship between v and t. So I would argue that t(v) is an acceptable answer. Try it on for size anyway! :-)
 
RawrSpoon said:
I'm unsure how that would work? Should I define b as being the cube root of mg so I end up having

m*dv/(v^3-b^3)? I'm not sure how I would integrate from there.

Use partial fraction decomposition. You can decompose a fraction of the form \frac{1}{(x-a)(x-b)(x-c)} as a sum of linear fractions \frac{A}{x-a}+ \frac{B}{x-b} + \frac{C}{x-c} by a suitable choice of constants A, B, C.
 
Thanks guys, I got it with partial fraction decomposition.

I also realized I was heading the wrong way since I was finding the relationship between v and t while the question prompted to find the relationship between v and y. So I did a=dv/dt=dy/dt * dv/dy=v*dv/dy to solve the problem.

It wasn't too tough after that. Thanks for all the help guys, I really appreciate it
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top