Newton's Law and Friction (Ramp problem)

AI Thread Summary
A block on an incline requires a 21 N force at a 13-degree angle to move at constant velocity. The ramp angle is 21 degrees, and the coefficient of friction is 0.17. The discussion focuses on resolving forces into components to find the weight of the block, with emphasis on the normal force and friction. The incorrect calculation of the block's weight, initially estimated at 54.85 N, highlights the need to properly account for the angles and forces involved. Understanding the relationship between the applied force, gravitational force, and friction is crucial for solving the problem accurately.
Mad Season
Messages
5
Reaction score
0

Homework Statement


A block is placed on a incline plane. A 21 N force is required to push the block up the incline with constant velocity. What is the weight of the block? Answer in units of N

Homework Equations


The force pushing the block=21 N with an angle of 13 degrees. The ramp has an angle of 21 degrees. Coefficient of friction=0.17. Ramp goes up from left to right.
fs = uN, F = ma, acceleration is 0.

Angle of force = phi, Angle of ramp = theta

The Attempt at a Solution


My attempt: (after drawing my free-body diagram)

F(y-component): N-mgcos(theta) = 0 --> N=mgcos(theta) --> Fsin(phi)-mgcos(theta) = 0
F(x-component): Fcos(phi)-mgsin(theta)-fs = 0 --> Fcos(phi)-mgsin(theta)-umgcos(theta) = 0

I multiplied the y-component with the negative u (or mu) to cancel out umgcos(theta)

Then: Fcos(phi)-uFsin(phi)-mgsin(theta) = 0, So I solved for mg and my answer was incorrect. What am I doing wrong? Any help appreciated, thanks.
 
Physics news on Phys.org
What did you find when the solving was done?
I notice phi is different from the 21 degrees. Is phi wrt horizontal? Does its y component contribute to the friction force ?
 
Well the problem indicated that the force pushing the block up the ramp had an angle of 13 degrees. So denoting that phi, I used Fsin(phi) and Fcos(phi) respectively.

My answer in the end was about 54.85 N. Which was incorrect. No idea what I am doing wrong.
 
I take it the free body diagram decomposes mg along the slope and perpendicular to it.
You want to do the same with the 21 N force. What is the angle wrt the plane ?
The component perpendicular to the plane is to be added to mg ##\cos\theta## to determine the normal force.
That times ##\mu## is the friction force, along the slope, downwards. To be added to mg ##\sin\theta##, also downwards. Call the sum Fdown
No acceleration (i.e. constant speed) along the slope means the 21 N component along the slope is equal and opposite to this Fdown
 
  • Like
Likes 1 person
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top