Newton's Laws: Finding Acceleration of a Crate on a Level Floor

  • Thread starter Thread starter corong1997
  • Start date Start date
  • Tags Tags
    Laws Newton's laws
AI Thread Summary
An 880 N crate is being pulled across a level floor by a 385 N force at a 27° angle, with a coefficient of kinetic friction of 0.25. To find the crate's acceleration, it's essential to separate the forces into horizontal and vertical components, using Fnet = ma. The horizontal force is calculated using the cosine of the angle, while the normal force must account for the vertical component of the pulling force. The net force in the horizontal direction is then determined by subtracting the frictional force from the applied horizontal force. Properly organizing the equations and maintaining clarity in direction will lead to the correct calculation of acceleration.
corong1997
Messages
5
Reaction score
0

Homework Statement


A 880 N crate is being pulled across a level floor by a force F of 385 N at an angle of 27° above the horizontal. The coefficient of kinetic friction between the crate and the floor is 0.25. Find the magnitude of the acceleration of the crate.


Homework Equations


Fnet=ma


The Attempt at a Solution


Okay, so I drew out a diagram. You need to find Force Normal in the X direction in order to get FF=coefficientFN, so the equation for the X direction would be FAcosTheta+FN-mg=ma. That eventually turns into FAcosTheta-mg=FN. The problem is, once I plug all the values into the Y equation, the website says I'm wrong. Please help me!
 
Physics news on Phys.org
corong1997 said:
Okay, so I drew out a diagram.
Good to see.
You need to find Force Normal in the X direction in order to get FF=coefficientFN, so the equation for the X direction would be FAcosTheta+FN-mg=ma. That eventually turns into FAcosTheta-mg=FN.

You've mixed horizontal and vertical forces in one expression.

On your diagram, draw out the components of F.
F\cos\theta would be the horizontal component of the force - FN (F_N) would be vertical right?
 
F = MA
you know the box is 880N , so divide that by gravity to get the mass.
The acceleration is in the horizontal, so you would use the horizontal force.
make a right triangle with 385N as the hypotenuse, and do COS(27) *385 to get the horizontal force.
But, you need the net force. so to find FF, you'd do mew*normalforce
the normal force, is the net vertical forces. So, you'd need to do 880N - the vertically applied force component (Sin27)*385
so you'd do .25 * (Sin27)*385

now, Fh - FF to get the net horizontal force

A = F / M

I got 1.857 m /s
 
@PotentialE - not bad, just a few pointers:
PotentialE said:
F = MA
you know the box is 880N , so divide that by gravity to get the mass.
The acceleration is in the horizontal, so you would use the horizontal force.
make a right triangle with 385N as the hypotenuse, and do COS(27) *385 to get the horizontal force.
But, you need the net force. so to find FF, you'd do mew*normalforce

the Greek letter is "mu", written μ off the sidebar (in advanced) or \mu
"mew" is cuter though ;) so you should claim that it was deliberate even if it wasn't.

I got 1.857 m /s
That's a speed - you need an acceleration. Watch those units - it's not clear is it's just a typo or if you really did solve for balanced forces.


The usual starting point is \Sigma F_x = ma_x and \Sigma F_y = ma_y and notice that a_y=0 \Rightarrow \Sigma F_y = 0 ... doing it in order avoids confusion when you do really complicated systems.

The trick is to keep each direction separate when you write out these sums - OP already knows how to do friction, so there will be an N or FN or whatever in both equations. You get two equations and two unknowns - very cleanly.
 
yeah I meant to type 1.857m/ss, just forgot to hit it an extra time.
"ΣFx=max and ΣFy=may and notice that ay=0⇒ΣFy=0" , doesn't mean much to me. I'm cool with the coordinate system and all, but the way I was taught it was simpler then your formula
 
Hey no worries. The sigma just means "sum" - they tell you to sum all the forces in each direction. So you pick a direction to call positive, any force the other way is negative.

This way is simpler in the long run - where you have to sum a very large number of forces which are arbitrarily aligned. You exploited an intuitive understanding of the symmetry - which is good, don't get me wrong. Be aware that people who don't understand it so well may have trouble following you.

If you do it this way then you can just read off the forces in each direction - just write then down one after the other on one line and the correct sum will just "appear".

It's also good discipline to work out all the algebra before you substitute values. This is especially true for computer mediated work, because rounding errors accumulate and typos are easier when there are lots of decimals. Again, this is something that pays off more later on. The point of doing this stuff is so you can do harder problems later - it's "wax on wax off".

I was kinda hoping OP would notice the thing with the vector directions and realize <head slap> and/or get back to me for more info. It's difficult to balance how much to tell someone. Well see what happens.

note: ms-2 is often written m/s/s rather than m/ss even though that does not make much sense mathematically. It could also be m/(ss) or m/s2 ... some things that are easy to write on paper are annoying to do on a computer!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top