What is the Average Force During a Collision?

AI Thread Summary
The discussion centers on calculating the average force during a collision involving an eighteen-wheeler crashing into a concrete wall. The truck weighs 95,000 lbs and travels at 80 mph, resulting in a deformation of 0.1m upon impact. Participants suggest using the energy approach, where the kinetic energy is divided by the stopping distance to estimate average force, but note this method only provides an average over distance, not time. The average acceleration and force calculations are complicated due to the lack of time data during the collision. Ultimately, while the energy approach yields a practical answer, it is acknowledged as conceptually flawed in representing average force over time.
FrostyMan
Messages
1
Reaction score
0

Homework Statement


As part of a safety test, an eighteen wheeler is being shot down a track by a rocket into a solid concrete wall. The truck is fully loaded, for a total weight of 95,000lbs. If the truck hits the wall at 80mph and causes a deformation of .1m in the wall before coming to a halt:

a. Draw two free body diagrams, one of the truck and the other of the wall, during the crash.
b. What is the average acceleration of the truck during the collision?
c. what is the average force on the truck during the collision?

Homework Equations


SumofF=ma
Vf=Vo+2a(Xf-Xo)
Xf=Xo+Vot+(1/2a)t^2

The Attempt at a Solution



I drew two free body diagrams: (_ is for formatting purposes)

______^________________________________^
______| Fn(Ground->Truck)________________|Fn(Ground-->Wall)
____Truck-->Fp(Rocket->Truck)___________Wall-->Fp(Truck-->Wall)
______|Fg(Earth->Truck)__________________|Fg(Earth-->Wall
______v________________________________v

I'm having trouble finding the average acceleration and the average force, however. I converted the lbs to kg (95,000lbs to 43091.24kg) and the mph to m/s (80mph to 35.7632m/s). I tried treating it as a 1D problem to find acceleration and wrote a table of variables but did not have enough knowns to finish the equations.

Any suggestions would be greatly appreciated.
 
Physics news on Phys.org
I often see this question in different guises. It is an error on the part of the poser of the question.
You are given a stopping distance and asked about a force. Since force x distance = energy, the obvious approach is to compute the KE and divide by the distance. That gives an average force in a sense, but it is an average over a distance, not an average over time. When we talk of average acceleration (and thus of average force) we mean the change in velocity divided by the time taken, so it's an average over time.
In practice, the force during a collision tends to increase more or less linearly from 0 to a maximum, then may stay at that maximum (as objects crumple) for a while, then quickly fall away to nothing. However, that makes it impossible to calculate the average over time without further information.
Sorry I can't be more helpful. I suggest you use the energy approach to get the answer expected, but please understand that it is wrong.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top