Nonlinear coordinate transformation

shawnstrausser
Messages
4
Reaction score
0
Evening all,

I'm trying to solve the 2-D diffusion equation in a region bounded by y = m x + b, and y = -m x -b. The boundary condition makes it complicated to work with numerically, and I recall a trick that involves a coordinate transformation so that y = m x + b, and y = -m x -b are mapped to y = 1, and y = 0, which I already have a program to solve numerically. This will transform the PDE, but that is easier (I think) to work with..

My attempt:
I simplified the problem to first consider y = m x, and y = - m x.
The curve y = m x can be written as (x, m x), and y = - m x as (x, -m x).
The transformation, T, should satisfy T(x, m x) = (x, 1) and T(x, - m x) = (x,0). As far as I can tell, (x, m x), and (x, - m x) form a basis(?) and so this should completely determine the transformation, from what I recall in Linear Algebra (or maybe that only works for a linear transformation?). It looks like the transformation is non linear as well. I'm not quite sure where to go, I want to map from the coordinates (x,y) to (x',y') that transform the curves as described above. If I could find the relationships x = f(x',y') and y = g(x',y'), then I could transform the derivatives in the PDE. Any help would be appreciated! Thank you in advance..
 
Physics news on Phys.org
Just realized I posted in the wrong section...sorry
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top