Appleton
- 91
- 0
Homework Statement
11) The tangent at P on the ellipse \frac{x^2}{a^2}+<br /> \frac{y^2}{b^2}=1 meets the x and y axes at A and B.
Find, in terms of the eccentric angle of P, the ratio of the lengths AP and BP.
12) Repeat Question 11 using the normal at P.
Homework Equations
bx \cos \theta + ay \sin \theta = ab
The Attempt at a Solution
[/B]
I had no significant difficulty with 11, my problem was with 12:
The normal at P is
y=\frac {a\sin\theta}{b\cos\theta}x-\frac{(a^2-b^2)\sin\theta}{b}<br />
When y = 0
x=\frac{(a^2-b^2)\cos\theta}{a}<br />
So
A =\left(\begin{array}{cc}\frac{(a^2-b^2)\cos\theta}{a}&0\end{array}\right)
When x = 0
y=-\frac{(a^2-b^2)\sin\theta}{b}<br />
So
B =\left(\begin{array}{cc}0&-\frac{(a^2-b^2)\sin\theta}{b}\end{array}\right)
AP^2= (a\cos\theta-\frac{(a^2-b^2)\cos\theta}{<br /> a})^2+<br /> (b\sin\theta)^2<br />
BP^2= (b\sin\theta+\frac{(a^2-b^2)\sin\theta}{<br /> b})^2 +<br /> (a\cos\theta)^2<br />
\frac{AP^2}{BP^2}=\frac{b^4(a^2\sin^2\theta+b^2\cos^2\theta)}{<br /> a^4(a^2\sin^2\theta+b^2\cos^2\theta)}<br />
\frac{AP}{BP}=\frac{b^2}{a^2}<br /> <br /> = the ratio of the lengths AP to BP
However my textbook says the correct answer is
\frac{a^2}{b^2}<br /> <br />