Normalize function - quantum chemistry

kanciara
Messages
1
Reaction score
0
Homework Statement
Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations
f(r)=N*exp{-alpha*r}
Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
 
Physics news on Phys.org
kanciara said:
Homework Statement:: Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations:: f(r)=N*exp{-alpha*r}

Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
Why do you think ##r## is a vector? Make sure you're not confusing vector ##\vec r## with its magnitude ##r##.
 
kanciara said:
Homework Statement:: Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations:: f(r)=N*exp{-alpha*r}

Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
The argument inside the exponential needs to be a scalar, so it would have to be something like ## \alpha \cdot \textbf{r}##. It should be clear by context. I've seen ##\textbf{k} \cdot \textbf{x}## in a wavefunction but never written with a radial variable.

If it is a scalar product then you will have something like
##\int N e^{ \alpha _r r + \alpha _{ \theta } \theta + \alpha _{ \phi } \phi }## (or some such) which you should be able to separate out and integrate individually.

-Dan
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top