Dick Taid
- 6
- 0
Homework Statement
Hi,
From the Kerr metric, in geometrized units,
\left(1 - \frac{2M}{r}\right) \left(\frac{dt}{d\lambda}\right)^2<br /> + \frac{4Ma}{r} \frac{dt}{d\lambda}\frac{d\phi}{d\lambda}<br /> - \frac{r^2}{\Delta} \left(\frac{dr}{d\lambda}\right)^2<br /> - R_a^2 \left(\frac{d\phi}{d\lambda}\right)^2 = 0
where R_a^2 = r^2 + a^2 + \frac{2Ma^2}{r} is the reduced circumference, a \equiv \frac{J}{M} is the spin parameter and \lambda is some affine parameter. I need to calculate the equations of motion.
Homework Equations
I want to solve the Lagrange equations
-\frac{d}{d\sigma}\left(\frac{\partial L}{\partial\left(dx^\alpha/d\sigma\right)}\right)<br /> + \frac{\partial L}{\partial x^\alpha} = 0
for the Lagrangian
\mathcal{L}\left(\frac{dx^{ \alpha}}{d\sigma},x^{\alpha}\right) <br /> = \left(-g_{\alpha\beta}\frac{dx^{\alpha}}{d\sigma}\frac{dx^{\beta}}{d\sigma}\right)^{1/2}
The Attempt at a Solution
The problem is, that the metric is null so the Lagrangian is as well (?). Is it possible to calculate the equations of motion using this approach, or am I "forced" to do it the hard way, using
\frac{d^2x^{\alpha}}{d\lambda^2} <br /> = -\Gamma_{\beta\gamma}^{\alpha}\frac{dx^{\beta}}{d \lambda}\frac{dx^{\gamma}}{d\lambda}
finding the Christoffel symbols, and so forth?