{???}
- 57
- 7
Homework Statement
A mass m attached to a spring of spring constant k emits sound at frequency f, detected by a collinear observer at distance r. If the mass has maximum velocity v_0, what is the total number of waves the observer detects in one period of oscillation?
Homework Equations
Unless I'm missing something, we should only need the Doppler effect for a moving source:
f'=\frac{v_s}{v_s-v_0}f
the angular velocity of a spring-mass system
\omega^2=\frac{k}{m}
and the number of waves being the integral of the frequency over time
N=\int_{t_i}^{t_f}f\,\mathrm{d}t
This last one I'm not sure about, but it makes sense in the case that f is constant, and seems a natural generalization.
The Attempt at a Solution
The spring-mass system oscillates with velocity given by
v(t)=v_0\cos\omega t,\qquad\textrm{where}\qquad\omega^2=\frac{k}{m}.
The observer is stationary, and so detects a Doppler-shifted frequency \tilde{f} given by
\tilde{f}(t)=\frac{v_s}{v_s-v(t)}f=\frac{v_s}{v_s-v_0\cos\omega t}.
The number of waves detected by the observer is simply the integral of frequency over time:
N=\int_0^T\tilde{f}(t)\,\mathrm{d}t=f\int_{-\frac{\pi}{\omega}}^\frac{\pi}{\omega}\frac{v_s\,\mathrm{d}t}{v_s-v_0\cos\omega t}.
We are assuming v_0<v_s, so that the denominator is never zero. We first substitute \theta=\omega t, so \mathrm{d}t=\mathrm{d}\theta/\omega and \theta(\pm\frac{\pi}{\omega})=\pm\pi:
N=\frac{v_sf}{\omega}\int_{-\pi}^\pi\frac{\mathrm{d}\theta}{v_s-v_0\cos\theta}.
We now substitute \theta=2\phi, so \mathrm{d}\theta=2\,\mathrm{d}\phi and \phi(\pm\pi)=\pm\frac{\pi}{2}:
N=\frac{v_sf}{\omega}\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\frac{2\,\mathrm{d}\phi}{v_s-v_0\cos 2\phi}<br /> =\frac{2v_sf}{\omega}\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\frac{\mathrm{d}\phi}{v_s(\cos^2\phi+\sin^2\phi)-v_0(\cos^2\phi-\sin^2\phi)}
=\frac{2v_sf}{\omega}\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\frac{\sec^2\phi\,\mathrm{d}\phi}{\sec^2\phi[(v_s-v_0)\cos^2\phi+(v_s+v_0)\sin^2\phi]}<br /> =\frac{2v_sf}{\omega}\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\frac{\sec^2\phi\,\mathrm{d}\phi}{(v_s-v_0)+(v_s+v_0)\tan^2\phi}.
We now substitute x=\tan\phi, so \mathrm{d}x=\sec^2\phi\,\mathrm{d}\phi, and x(\pm\frac{\pi}{2})=\pm\infty:
N=\frac{2v_sf}{\omega}\int_{-\infty}^\infty\frac{\mathrm{d}x}{(v_s-v_0)+(v_s+v_0)x^2}.
We finally substitute x=\sqrt{(v_s-v_0)/(v_s+v_0)}z, so \mathrm{d}x=\sqrt{(v_s-v_0)/(v_s+v_0)}\,\mathrm{d}z:
N=\frac{2v_sf}{\omega}\sqrt\frac{v_s-v_0}{v_s+v_0}\int_{-\infty}^\infty\frac{\mathrm{d}z}{(v_s-v_0)+(v_s-v_0)z^2}<br /> =\frac{2v_sf}{\omega}\frac{1}{\sqrt{v_s^2-v_0^2}}\int_{-\infty}^\infty\frac{\mathrm{d}z}{1+z^2}<br /> =\fbox{$\displaystyle\frac{2\pi fv_s}{\sqrt{v_s^2-v_0^2}}\sqrt\frac{m}{k}$.}
There is also the "obvious" answer
n=2\pi f\sqrt\frac{m}{k}.
I can see why this answer should be right, and why qualitatively my answer above should be wrong. However, I cannot find any flaw in my quantitative argument. Can anybody help me spot the error in my reasoning?
Last edited: