Obtain an equation of the plane in the form ##px+qy+rz=d##

Click For Summary
The discussion revolves around obtaining the equation of a plane in the form px + qy + rz = d. It highlights the use of the cross product to find the normal vector of the plane and suggests that using a specific point on the plane simplifies the process of determining the constant C. The participants explore different parametrizations and methods to express the plane's equation, ultimately arriving at y + z - 7 = 0. Additionally, they discuss the formula for the distance from a point to the plane, indicating a desire for clarity on the calculations involved. The conversation reflects a collaborative effort to understand and solve the problem effectively.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
vectors
1712819096284.png

The solution is here;
1712819128866.png



Now to my comments,
From literature, the cross product of two vectors results into a vector in the same dimension. A pointer to me as i did not know the first step. With that in mind and using cross product, i have

##(1-1)i - (-1-1)j+(1+1)k =0i+2j +2k## as shown in ms attachment.

Now the second part is the reason of this post. My take on that is,

##r=(λ +μ)i + (μ-4-λ)j + (λ-3-μ)k =x+y+z##

Now

##λ +μ = 0, ⇒ λ = -μ##

Therefore,
##μ-4+μ=y##
##-μ-3-μ=z##

on adding the above two equations,

##-4+-3=y+z##
##-7=y+z##

unless there is a better approach or simpler...have a great day.
 
Physics news on Phys.org
The general form of the equation for a plane is
$$
\vec n \cdot \vec r = C,
$$
where ##C## is a constant and ##\vec n## is normal to the plane. You have first found ##\vec n## so that is fine, but after that you are inserting the general form of any parametrised point on the plane. This is unnecessarily complicated. You know that the expression above should equal the same constant ##C## regardless of the point so using a single point in the plane will give you ##C##. The easiest is to just take the point corresponding to ##\mu =\lambda = 0##, i.e., ##\vec r = -4\hat j - 3\hat k##. Doing so with ##\vec n = \hat j + \hat k## results in
$$
C = -4 \cdot 1 - 3 \cdot 1 = -7
$$
and therefore
$$
\vec n \cdot \vec r = y + z = -7
$$
 
  • Informative
  • Like
Likes docnet and chwala
Also note that there is no requirement that ##\mu + \lambda = 0##, but this just describes a line in the plane. The values of ##\mu## and ##\lambda## are arbitrary, but the point is that you will get the same constant ##C## regardless of the values of ##\mu## and ##\lambda##.
 
This is also related part of question,

1712822314717.png


The solution is here - quite clear to me

1712822345388.png


but nothing wrong with me having,
##y+z-7=0##
##-5x+3y+5z-4=0##

setting ##x=0## gives

##y=-\dfrac{39}{2}## and ##z=\dfrac{25}{2}##

Thus,

##r+λ(n_1 ×n_2) = (0, -19.5, 12.5) +λ(2,-5,5)##
 
Sure, it is just a different parametrisation. Setting ##\lambda = \lambda' - 7/2## should give you the parametrisation given in the answer key.
 
This last part is also related to the question- hmmmm i have no idea how they did this but i will still share my thoughts.

1712826871823.png


1712826891897.png



Mythoughts,

Distance between a point and a plane is given by,

##D=\dfrac{|ax_0 +by_o+cz_0 +d|}{\sqrt{a^2+b^2+c^2}}=\sqrt{2}##

Now could they have used ,

##x=a +λ (1-b-a)##

##y=a+λ(b-a)##

##z=(a-7)+λ(b-a-7)##

when ##λ=0## I will then have,

##D=\dfrac{|0 +a+a-7+7|}{|\sqrt{0^2+1^2+1^2}|}=\sqrt{2}##

If that is the case then its time for me to have hot coffee! :cool:
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...

Similar threads