Obtain Time evolution from Hamiltonian

carllacan
Messages
272
Reaction score
3

Homework Statement


A quantum system with a ##C^3## state space and a orthonormal base ##\{|1\rangle, |2\rangle, |3\rangle\}## over which the Hamiltonian operator acts as follows:
##H|1\rangle = E_0|1\rangle+A|3\rangle##
##H|2\rangle = E_1|2\rangle##
##H|3\rangle = E_0|3\rangle+A|1\rangle##

Build H and obtain the eigenvalues and the eigenvectors.

If ##|\Phi((0)\rangle = |2\rangle## obtain ##|\Phi(t)\rangle##.

If ##|\Phi((0)\rangle = |3\rangle## obtain ##|\Phi(t)\rangle##.

Homework Equations

The Attempt at a Solution


I've managed to build the H matrix and obtain the eigenvectors.
The second part is ##|\Phi(t)\rangle = e^{-\frac{i}{\hbar}E_1t}|2\rangle##
It is the third part that I'm not sure. Should I build the change of basis matrix from the eigenvectors and apply it to the vector ##|3\rangle## expressed as ## |0 0 1\rangle##, so that I get its eigenvectors descomposition?
 
Physics news on Phys.org
carllacan said:
It is the third part that I'm not sure. Should I build the change of basis matrix from the eigenvectors and apply it to the vector ##|3\rangle## expressed as ## |0 0 1\rangle##, so that I get its eigenvectors descomposition?
That should work, yes. Once you have the composition in eigenvectors, the time-evolution is easy to write down.
 
Thanks mfb.

Just a little side question: I've done the change of basis with ##|3\rangle' = S|3\rangle S^{-1}##. Could I have done ##|3\rangle' = S^\dagger|3\rangle S##?
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top