Can someone help me out with the following question?(adsbygoogle = window.adsbygoogle || []).push({});

Q. The position x(t) at time t of a mass attached to a spring hanging from a moving support satisifies the differential equation:

[tex]

\frac{{d^2 x}}{{dt^2 }} + 2p\frac{{dx}}{{dt}} + \omega _0 ^2 x = 2\sin \left( t \right)

[/tex]

a) Find the steady state solution when w_0 = 3 and p = 1.

b) If p = 0 then there is a value for w_0 > 0 for which there is no steady state. What is this value of w_0? Justify your answer by finding the particular solution.

a) The auxillary equation has complex roots with a negative real part so the complimentary function isn't a part of the steady state solution since the decaying exponential leads to the complimentary function tending to zero as t gets large? So I need a particular solution I think. I found [tex]x_p \left( t \right) = \frac{1}{5}\left( {4\sin t - \cos t} \right)[/tex].

b) I'm not really sure about this part but I found a particular solution anyway. I obtained [tex]x_p \left( t \right) = \frac{{2\sin \left( t \right)}}{{\omega _0 ^2 - 1}}[/tex]. I don't understand what is meant by find a value for which there is no steady state. w_0 is constant so x_p(t) is just sine function with the 'usual' behaviour isn't it? If I were to guess I'd just say w_0 = 1 but could someone help me out with this question?

I would also like to know if the following would be a 'valid' way to quickly formulate the formula for the surface area of a graph revolved about the x-axis.

A bit of arc length is [tex]dL = \sqrt {1 + \left( {\frac{{dy}}{{dx}}} \right)^2 } dx[/tex]. A 'sample' circumference is [tex]dC = 2\pi (height) = 2\pi f\left( x \right)[/tex]. Then the surface area of the graph revolved about the x-axis from x = a to x = b is [tex]S = \int\limits_a^b {2\pi f\left( x \right)} \sqrt {1 + \left( {\frac{{dy}}{{dx}}} \right)^2 } dx[/tex]?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: ODE steady state solution

**Physics Forums | Science Articles, Homework Help, Discussion**