Ok, let's say we measured the eigenvalue of the observable ##A## to be ##A_i## using a device with a measurement accuracy ##\epsilon_A##. Then (if we neglect measurement theory) the state ##\Psi## will collapse to the state ##\Psi_{(A_i,\epsilon_A)}=\frac{P_A(S(A_i,\epsilon_A))\Psi}{\lVert P_A(S(A_i,\epsilon_A))\Psi\rVert}##, where ##P_A(S(A_i,\epsilon_A))## is a projector of ##A## and ##S(A_i,\epsilon_A)## is some Borel set in the spectrum of ##A##. For example, it could be that ##S=(A_i-\epsilon_A,A_i+\epsilon_A)\cap\mathrm{spec}(A)##. In any case, we get ##\sigma_A^{\frac{P_A(S(A_i,\epsilon_A))\Psi}{\lVert P_A(S(A_i,\epsilon_A))\Psi\rVert}}\approx\epsilon_A##. By our uncertaincy relation, we have:
$$\sigma_A^{\Psi_{(A_i,\epsilon_A)}}\sigma_B^{U(\Delta t)\Psi_{(A_i,\epsilon_A)}} \geq \frac 1 2 \left|\left<\Psi_{(A_i,\epsilon_A)},\left[A,B(\Delta t)\right]\Psi_{(A_i,\epsilon_A)}\right>\right|$$
Thus, independent of the outcome ##A_i##, we have:
$$\sigma_B^{U(\Delta t)\Psi_{(A_i,\epsilon_A)}}\geq \sigma_B^{\Psi,\Delta t,\epsilon_A} :=\inf_{A_i \in \mathrm{spec}(A)} \sigma_B^{U(\Delta t)\Psi_{(A_i,\epsilon_A)}}=\inf_{A_i \in \mathrm{spec}(A)} \frac{1}{2\epsilon_A}\left|\left<\Psi_{(A_i,\epsilon_A)},\left[A,B(\Delta t)\right]\Psi_{(A_i,\epsilon_A)}\right>\right|$$
In general, ##\sigma_B^{\Psi,\Delta t,\epsilon_A}\neq 0##. For example in our case, we have ##\sigma_p^{\Psi,\Delta t,\epsilon_x} = \frac{\hbar}{2\epsilon_x}+O(\Delta t^2)##.
Now, if we prepare a quantum system in the state ##\Psi##, measure ##A## at time ##t=0## to accuracy ##\epsilon_A## and ##B## at time ##t=\Delta t## to accuracy ##\epsilon_B## and we repeat this procedure ##N## times, we will get a list of ##N## pairs ##(A_i,B_i)_i##. We can now take an estimator for the variance and calculate for example ##\mathrm{Var}_N((B_i)_i)=\frac 1 N \sum_{i=1}^N (B_i-\bar B)^2##. Then the prediction of quantum mechanics is:
$$\lim_{N\rightarrow\infty} \mathrm{Var}_N((B_i)_i) \geq (\sigma_B^{\Psi,\Delta t,\epsilon_A})^2$$
This has nothing to do with the accuracy ##\epsilon_B## at which you have measured the ##(B_i)_i##. You can measure them to any desired accuracy, but statistically, it will be impossible for you to get the variance down beyond the uncertainty limits of quantum mechanics.