1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

One day the brakes fail just as the cable car leaves the top on its downward journey.

  1. Oct 4, 2008 #1
    1. The problem statement, all variables and given/known data
    The 2100kg cable car shown in the figure descends a 200-m-high hill. In addition to its brakes, the cable car controls its speed by pulling an 1840kg counterweight up the other side of the hill. The rolling friction of both the cable car and the counterweight are negligible.

    How much braking force does the cable car need to descend at constant speed?

    One day the brakes fail just as the cable car leaves the top on its downward journey. What is the runaway car's speed at the bottom of the hill?

    2. Relevant equations

    F = ma

    3. The attempt at a solution
    I already found the breaking force = 4122N
    but my answers for the second question was always wrong
     

    Attached Files:

    Last edited: Oct 4, 2008
  2. jcsd
  3. Oct 4, 2008 #2
    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    Use conservation of energy.

    [tex] U_g = mg\Delta h [/tex]

    [tex] E_k = \frac{1}{2}mv^2 [/tex]
     
    Last edited: Oct 4, 2008
  4. Oct 4, 2008 #3
    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    So Ug = 4122*200 = 824600?
    what does Ug or Ek stand for?

    I'm really worried because I have to submit my answer online and if I get it wrong, its not like I can change it. thanks so much for helping!!
     
  5. Oct 4, 2008 #4

    Doc Al

    User Avatar

    Staff: Mentor

    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    No.
    Gravitational potential energy and kinetic energy.

    When considering conservation of energy, be sure to consider both the car and the counterweight.
     
  6. Oct 4, 2008 #5
    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    so does Ek = 824600 = .5mv^2
    then 824600 = .5(4123/9.8)v^2
    and v = 62.6m/s???
    i dont know if I'm doing this right at all
     
  7. Oct 4, 2008 #6

    Doc Al

    User Avatar

    Staff: Mentor

    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    There are at least two (equivalent) ways to attack this problem. You can use the result from part one to find the net force on the system and then its acceleration. Then you can find the final speed using kinematics.

    Or you can use conservation of energy: ΔKE + ΔPE = 0. Start by finding the change in PE of the system. Hint: The car goes down while the counterweight goes up.
     
  8. Oct 4, 2008 #7
    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    so if i use the first way and my results from the first part which the net force = 4120N. That's the right answer

    then I do F = ma
    4120 = (2100sin30 - 1840sin20)a
    a = 9.8m/s^2
    isnt that the same as g?

    so if that's right then I use : V_s^2 = V_0^2 + 2a(delta x)
    delta x: sin30 = 200/x
    x = 400m
    V_s^2 = 0 + 2(9.8)(400)
    v = 88.5m/s

    i did this and the answer was wrong, can you please tell me what I did wrong, thanks so you much!!
     
  9. Oct 4, 2008 #8

    Doc Al

    User Avatar

    Staff: Mentor

    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    OK. If the breaking force is removed, then 4120 N is the net force.

    m is the mass of the system. Just add the masses.
    Getting a = g should tip you off that something's wrong. :wink:
     
  10. Oct 4, 2008 #9
    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    so I dont have to take into account the angles of the slopes at all?

    so then 4120 = (2100+?? or - 1840) because isnt the counterweight slowing the car down? so should I add the masses

    and then do I use the same kinematics that I used before??
     
  11. Oct 4, 2008 #10

    Doc Al

    User Avatar

    Staff: Mentor

    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    Not when calculating the total mass.

    The total mass is just the sum of both masses. Just add them.

    Yes.
     
  12. Oct 4, 2008 #11
    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    4120 = (2100 + 1840)a
    a = 1.04 m/s^2

    V_f^2 = 0 + 2(1.04)(400)
    V_f = 28.9m/s

    so the 400 m is right?
    and would the final velocity be negative since its going downhill?
     
  13. Oct 4, 2008 #12
    Re: One day the brakes fail just as the cable car leaves the top on its downward jour

    nevermind I got it thank you sooooo much
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: One day the brakes fail just as the cable car leaves the top on its downward journey.
  1. Car Braking (Replies: 3)

  2. Cars Slam on brakes (Replies: 1)

Loading...