Optics - right handed circular polarization

AI Thread Summary
The discussion revolves around formulating the electric field expression for a right-handed circularly polarized light wave traveling in the positive z-direction. The initial attempt at the solution led to confusion regarding the direction of the electric field at z=0, t=0, which did not align with the requirement of pointing in the negative x-direction. After some deliberation, a revised expression was proposed, suggesting that the correct formulation should include a negative sign to ensure clockwise rotation. Additionally, a participant pointed out a typographical error in the notation, clarifying that kz should replace kx in the context of the electric field expression. The conversation emphasizes the importance of accurately defining the polarization direction in optics.
DataGG
Gold Member
Messages
157
Reaction score
22

Homework Statement



Write an expression for a light wave circular polarized to the right, traveling in the positive ZZ direction, such that the electric field points in the negative XX direction at z=0, t=0.

Homework Equations



Right handed polarization is the same as clockwise, I think..

##E_{0x} = E_{0y}## throughout the whole thing.

$$\vec{E}(z,t)=E_{0x}sin(kz - wt)\vec{i} + E_{0y}sin(kz - wt + \frac{\pi}{2})\vec{j}$$

The Attempt at a Solution



Well, I'm having a problem.

$$\vec{E}(z,t)=E_{0x}cos(kz - wt)\vec{i} + E_{0y}sin(kz - wt)\vec{j}$$

At ##z=0##, we have

$$\vec{E}(0,t)=E_{0x}cos(wt)\vec{i} - E_{0y}sin(wt)\vec{j}$$

So it indeed moves clockwise (co-sine decreases while the sin increases negatively)

At ##z=0## and ##t=0##:

$$\vec{E}(0,0)=E_{0x}\vec{i}$$ Which does not point in the negative XX direction.

If I place a minus in the co-sine term, then it'll look like this:

$$\vec{E}(0,t)= - E_{0x}cos(wt)\vec{i} - E_{0y}sin(wt)\vec{j}$$

and that means that the co-sine will decrease negatively and the sin increase negatively. That would be a left handed circular polarization, because it would be counter-clockwise. I think?

So, how do I go about doing this?
 
Last edited:
Physics news on Phys.org
I think I solved my problem. No idea how I didn't see this sooner. Well, I actually did, but I dismissed it for some reason..

I think the following equation satisfies everything:

$$\vec{E}(z,t)=-E_{0}cos(kz - wt)\vec{i} - E_{0y}sin(kz - wt)\vec{j}$$

Would someone please confirm?
 
Last edited:
Can anyone confirm it? Is it correct?
 
While optics is a bit out of my realm, it looks as though what you have will definitely rotate clockwise. If you're not sure you can check the direction of the derivative at a point on the unit circle. If you want the direction it's pointing in check the direction of your function at that point.

Just a quick question, if you have E(z,t), why are you setting kx = 0 at E(0,t) ?
Should that be kz instead?
 
  • Like
Likes 1 person
BiGyElLoWhAt said:
While optics is a bit out of my realm, it looks as though what you have will definitely rotate clockwise. If you're not sure you can check the direction of the derivative at a point on the unit circle. If you want the direction it's pointing in check the direction of your function at that point.

Just a quick question, if you have E(z,t), why are you setting kx = 0 at E(0,t) ?
Should that be kz instead?

Oh yes, that's definitely a typo. Where it reads ##kx## it should be ##kz##. Thanks for the heads-up, will edit right away!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top