Old Guy
- 101
- 1
Homework Statement
For ordinary 1D diffusion show that the mean value of the square of the position is equal to 2Dt
Homework Equations
\left\langle {x^2 \left( t \right)} \right\rangle \equiv \int\limits_0^\infty {x^2 p\left( {x,t} \right)dx} <br />
\frac{\partial }{{\partial t}}p\left( {x,t} \right) = D\frac{{\partial ^2 }}{{\partial x^2 }}p\left( {x,t} \right)<br />
The Attempt at a Solution
\begin{array}{l}<br /> \left\langle {x^2 \left( t \right)} \right\rangle \equiv \int\limits_0^\infty {x^2 p\left( {x,t} \right)dx} \\ <br /> \frac{\partial }{{\partial t}}\left\langle {x^2 \left( t \right)} \right\rangle = \frac{\partial }{{\partial t}}\int\limits_0^\infty {x^2 p\left( {x,t} \right)dx} = \int\limits_0^\infty {x^2 \frac{\partial }{{\partial t}}p\left( {x,t} \right)dx} + \int\limits_0^\infty {p\left( {x,t} \right)\frac{\partial }{{\partial t}}x^2 dx} \\ <br /> \frac{\partial }{{\partial t}}\left\langle {x^2 \left( t \right)} \right\rangle = \int\limits_0^\infty {x^2 \frac{\partial }{{\partial t}}p\left( {x,t} \right)dx} + \int\limits_0^\infty {p\left( {x,t} \right)\frac{\partial }{{\partial t}}x^2 dx} \\ <br /> \frac{\partial }{{\partial t}}\left\langle {x^2 \left( t \right)} \right\rangle = \int\limits_0^\infty {x^2 \frac{\partial }{{\partial t}}p\left( {x,t} \right)dx} + \int\limits_0^\infty {p\left( {x,t} \right)\frac{\partial }{{\partial t}}x^2 dx} \\ <br /> \\ <br /> \int\limits_0^\infty {x^2 \frac{\partial }{{\partial t}}p\left( {x,t} \right)dx} = D\int\limits_0^\infty {x^2 \frac{{\partial ^2 }}{{\partial x^2 }}p\left( {x,t} \right)dx} \\ <br /> u = x^2 \Rightarrow du = 2xdx \\ <br /> dv = \frac{{d^2 }}{{dx^2 }}p\left( {x,t} \right)dx \Rightarrow v = \frac{d}{{dx}}p\left( {x,t} \right) \\ <br /> \int\limits_0^\infty {x^2 \frac{\partial }{{\partial t}}p\left( {x,t} \right)dx} = Dx^2 \frac{d}{{dx}}p\left( {x,t} \right) - 2D\int\limits_0^\infty {x\frac{d}{{dx}}p\left( {x,t} \right)dx} \\ <br /> \\ <br /> \int\limits_0^\infty {x\frac{d}{{dx}}p\left( {x,t} \right)dx} \\ <br /> u = x \Rightarrow du = dx \\ <br /> dv = \frac{d}{{dx}}p\left( {x,t} \right)dx \Rightarrow v = p\left( {x,t} \right) \\ <br /> \int\limits_0^\infty {x\frac{d}{{dx}}p\left( {x,t} \right)dx} = xp\left( {x,t} \right) - \int\limits_0^\infty {p\left( {x,t} \right)dx} \\ <br /> \end{array}<br />
I see that I'm home free if
Dx^2 \frac{d}{{dx}}p\left( {x,t} \right) = 0
and
<br /> xp\left( {x,t} \right) = 0<br />
but how can I justify that?
Thanks!