rocomath
- 1,752
- 1
Suppose
A\overrightarrow{x}=\lambda_1\overrightarrow{x}
A\overrightarrow{y}=\lambda_2\overrightarrow{y}
A=A^T
Take dot products of the first equation with \overrightarrow{y} and second with \overrightarrow{x}
ME 1) (A\overrightarrow{x})\cdot \overrightarrow{y}=(\lambda_1\overrightarrow{x})\cdot\overrightarrow{y}
BOOK ... skipped steps but only shows this 1) (\lambda_1\overrightarrow{x})^T\overrightarrow{y}=(A\overrightarrow{x})^T\overrightarrow{y}=\overrightarrow{x}^TA^T\overrightarrow{y}=\overrightarrow{x}^TA\overrightarrow{y}=\overrightarrow{x}^T\lambda_2\overrightarrow{y}
Now it looks like I have to transpose my first step, but if I do so, do I assume that y=y^T?
A\overrightarrow{x}=\lambda_1\overrightarrow{x}
A\overrightarrow{y}=\lambda_2\overrightarrow{y}
A=A^T
Take dot products of the first equation with \overrightarrow{y} and second with \overrightarrow{x}
ME 1) (A\overrightarrow{x})\cdot \overrightarrow{y}=(\lambda_1\overrightarrow{x})\cdot\overrightarrow{y}
BOOK ... skipped steps but only shows this 1) (\lambda_1\overrightarrow{x})^T\overrightarrow{y}=(A\overrightarrow{x})^T\overrightarrow{y}=\overrightarrow{x}^TA^T\overrightarrow{y}=\overrightarrow{x}^TA\overrightarrow{y}=\overrightarrow{x}^T\lambda_2\overrightarrow{y}
Now it looks like I have to transpose my first step, but if I do so, do I assume that y=y^T?
Last edited: