Orthogonal matrix whose submatrix has special properties

julie94
Messages
18
Reaction score
0
Dear Forumers.

I am working on the following problem.

Let matrix P=( A B ) where A and B are matrices. Let P be an n*n orthogonal matrix.

Show that A'A is an idempotent matrix.

I do not know where to start. Thanks in advance for the help.
 
Physics news on Phys.org
I can write
PP'=(A B)(A B)'
=(AB'+AA' BB' +BA')

and I can write
PP'=In
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top