Parametrization of the path described by the end of a thread

rashomon
Messages
3
Reaction score
0

Homework Statement



2. Consider a stationary circular spool of thread of radius R. Assume the end of the thread is initially located at (0; R). While keeping the thread taut, the thread is unwound in a clockwise direction.

(a) Parameterize the path described by the end of the thread as r(t) = x(t)i + y(t)j. You may assume that the radius of the spool does not change as the thread is unwound.

(b) Determine the arc length, s(t), of the path traced out by the end of the thread.

Homework Equations


The Attempt at a Solution


It seems to me that it is describing the taut thread as it is more or less rotated around the spool. I am confused on why there isn't a z(t) element too.
 
Physics news on Phys.org
consider the axis of the spool as aligning with the z axis, and the thread constrained to the xy plane
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top