Partial Sum of n^2 from 1 to k - Formula

  • Thread starter Thread starter KingNothing
  • Start date Start date
  • Tags Tags
    Partial Sum
KingNothing
Messages
880
Reaction score
4
Is there a nice formula for calculating the partial sum of the series n^2 from 1 to k?
 
Physics news on Phys.org
k(k+1)(2k+1)/6
 
You can derive that as follows:

k^3=\sum_{n=1}^k (n^3-(n-1)^3)=\sum_{n=1}^k (n^3-(n^3-3n^3+3n-1))=3\sum_{n=1}^k n^2-3\sum_{n=1}^k n+\sum_{n=1}^k 1=3\sum_{n=1}^k n^2-3k(k+1)/2+k

\sum_{n=1}^k n^2=\frac{1}{3} (k^3+3k(k+1)/2-k)=\frac{1}{3}(k(k+1)(k-1)+3k(k+1)/2))=k(k+1)(k+1/2)/3=k(k+1)(2k+1)/6
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top