Particle motion + electric field when voltage varies

AI Thread Summary
The discussion centers on the motion of electrons between two parallel plates with a potential difference, analyzing how changes in voltage affect their impact position on a fluorescent screen. The initial and final energies of the electrons are equated, leading to a derived expression for the final velocity based on the electric force. The motion is decomposed into constant horizontal and accelerated vertical components, allowing for calculations of time and distance traveled. A final equation is presented to express the impact position as a function of voltage, with a request for validation of its accuracy and relevance to the original question. The conversation highlights the importance of careful derivation and simplification in physics problems.
RmsAdd
Messages
2
Reaction score
0

Homework Statement


Two parallel plates located at a distance "L" from each other they maintain a potential difference "V" because of a battery (as shown in the picture). Through a small hole, made in bottom plate, electrons get into system (with mass "m" and charge "-e"), with velocity "v" and forming a θ angle with the perpendicular direction of the plate. A flourescent screen at the top plate allows to determine where the electrons impact.

If there is a small change dV at the potential difference betwen the plates. Where and how much the position where electrons impact varies? (Do not matter about relativism effects and cuatic effects). Make a scheme about the dependency of that variation with the velocity v and the angle θ.
Picture.PNG


Dos placas paralelas situadas a distancia L una de la otra, se mantienen a una diferencia de potencial V por medio de una batería, como muestra la figura. Por un pequeño orificio practicado en la placa de abajo ingresan electrones (de masa m y carga -e), con una velocidad v y formando un angulo θ con la dirección perpendicular a la placa. Una pantalla fluorescente en la placa de arriba permite determinar dónde inciden los electrones.
Si se produce un pequeño cambio dV en la diferencia de potencial entre las placas, ¿Cómo y cuanto varía la posición donde inciden los electones? (despreciar efectos relativistas y cuánticos). Realizar un grafico esquematico que ilustre la dependencia de esta variación con la velocidad v y el angulo θ
problem.png

Homework Equations

The Attempt at a Solution


Energy analisis:

The initial energy and the final energy have to be the same.
E_{f}=E{i}
E_{kf}=E_{ki}+U_{e}
\frac12 \cdot m \cdot v_{f}^{2}=\frac12 \cdot m \cdot v_{i}^{2}+F_{e} \cdot L
v_{f}=\sqrt{ v_{i}^{2}+ \frac{2 \cdot F_{e} \cdot L}{m}}\qquad \text{(1)}

Motion analisis:

\Sigma F_{x}=0
v_{x}=constant
\Sigma F_{y}=m \cdot \vec{a}

So we have a constant uniform motion in x-axis and a constant aceleration in y-axis. I can find the final velocity in y-axis using Pythagorean teorem
pitagoras.png

v_{f}^2=v_x^2 + v_{fy}^2
v_{fy}=\sqrt{v_f^2 - v_x^2}

In y-axis aceleration is constant so I can do:
V_{m}=\frac{v_{fy}+v_{iy}}{2}
V_{m}=\frac{\Delta y}{\Delta t}
\Delta t=\frac{2 \Delta y}{v_{fy}+v_{iy}} \qquad \text{(2)}
This is the time that it takes to the particle in order to reach the top plate. I can use \Delta t to get x-axis distance.
v_x=\frac{\Delta x}{\Delta t}
x=v_x \cdot \Delta t

Replacing with (2):
x=v_x \cdot \frac{2 \Delta y}{v_{fy}+v_{iy}}
\Delta y=L
v_x=\sin \theta \cdot v_i
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_f^2-v_x^2}+v_i \cdot \cos \theta}

Replacing vf with (1) and replacing vx:
Edit: I've made a mistake replacing vx^2
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_f^2}+v_i \cdot \cos \theta}

x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot \left(v_i^2+\frac{2 \cdot F_e \cdot L}{m} \right)}+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_i^2 + \sin^2 \theta \cdot \frac{2 \cdot F_e \cdot L}{m}}+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2(1- \sin^2 \theta) +\frac{2 \cdot F_e \cdot L}{m}(1+\sin^2 \theta)}+ \cos \theta \cdot v_i}

x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_i^2}+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2 \left( 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta \right) }+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{v_i \sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{v_i \left( \sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta \right)}
x=\frac{2 \cdot L \cdot \sin \theta}{\sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}

Finally I know that:
V=\frac{U_e}{q}=\frac{F_e \cdot L}{q}
F_e \cdot L=V \cdot q

x=\frac{2 \cdot L \cdot \sin \theta}{ \sqrt{ 1+ \frac{2 \cdot V \cdot q}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}

Now I've an equation which gives me the position as function of voltage. Can I do \frac{\partial x}{\partial V} in order to obtain how much the position varies in relation with small variation \partial V?

Am I doing it in a adequated way (I think that it's a really ugly equation)? Or should I consider other factors?
 

Attachments

  • Picture.PNG
    Picture.PNG
    1.2 KB · Views: 321
  • problem.png
    problem.png
    40.8 KB · Views: 573
  • pitagoras.png
    pitagoras.png
    2 KB · Views: 275
Last edited:
Physics news on Phys.org
Your idea is correct. However, you have some errors in your derivation of ##x(V)##. For example, you have used ##v_x^2 = v_f^2 \sin^2\theta## rather than ##v_x^2 = v_i^2 \sin^2\theta##.
 
  • Like
Likes RmsAdd
Thank you very much @Orodruin !
I corrected it.
Then I've to do \frac{\partial x}{\partial V}.
x(V)=\frac{2 \cdot L \cdot \sin \theta}{ \sqrt{ 1+ \frac{2 \cdot V \cdot q}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}
\frac{\partial x}{\partial V} = \frac{ \frac{-2L \sin \theta \cdot \frac{2q}{m \cdot v_i^2} }{2 \sqrt{1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta}} }{ \left( \cos \theta + \sqrt{1+\frac{2Vq}{m \cdot v_i^2} - \sin^2 \theta } \right)^2 }
\frac{\partial x}{\partial V} = \frac{ -2Lq \sin \theta }{ m \cdot v_i^2 \left( \cos \theta + \sqrt{1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta } \right) ^2 \sqrt{ 1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta } }

Does that equation answers the question about "Where and how much the position where electrons impact varies" or should I find something else?
 
Last edited:
RmsAdd said:
cuatic effects
For your information, the English is "quantum effects".
I would have treated it like a gravitational trajectory question, using the SUVAT equations, but it's probably no simpler.
You could simplify your final expression a bit by collapsing 1-sin2 to cos2 and creating a name for the group ##\frac{2q}{mv_i^2}##, which occurs in three places.
 
  • Like
Likes RmsAdd
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top