Passing an integral through an infinite sum

DeadOriginal
Messages
274
Reaction score
2

Homework Statement


I want to show that
$$
\tan^{-1}(x)=\sum\limits_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1}.
$$

Homework Equations


I start with
$$
\int\frac{1}{1+x^{2}}dx.
$$

The Attempt at a Solution


I want to be able to do the following:
$$
\int\frac{1}{1+x^{2}}dx=\int\sum\limits_{n=0}^{\infty}(-1)^{n}x^{2n}dx=\sum\limits_{n=0}^{\infty}\int (-1)^{n}x^{2n}dx
$$
but I am afraid that the infinite sum might create problems. Can anyone take a look? Thanks!
 
Physics news on Phys.org
The order of the sum and integral can be switched, since they are both sums, so that's fine.

So it seems that \frac{1}{1+x^2} can be expressed as an infinite geometric series so long as |x^{2}|\leq 1.

Where
\frac{1}{1-r}=\sum_{i=0}^{∞} r^{i}
when |r|\leq 1

we can say that

\frac{1}{1+x^2}=\sum_{i=0}^{∞} (-x^2)^{i}=\sum_{i=0}^{∞} (-1)^{i}(x)^{2i}
when |x^{2}|\leq 1

Hope this helps:)
 
jfizzix said:
The order of the sum and integral can be switched, since they are both sums, so that's fine.

They cannot always be switched. Only under certain conditions is that statement valid. While this can be done so here it is bad habit to think the statement as always true.

To reference http://en.wikipedia.org/wiki/Fubini's_theorem
 
Thanks guys! That helps a lot.
 
Have you heard about uniform convergence? Long story short, it allows us to verify if the following relationships actually hold :

$$\int_{a}^{b} \sum_{n=0}^{∞} a_nx^n = \sum_{n=0}^{∞} \int_{a}^{b} a_nx^n$$
$$\frac{d}{dx} \sum_{n=0}^{∞} a_nx^n = \sum_{n=0}^{∞} \frac{d}{dx} a_nx^n$$
$$lim_{x→a} \sum_{n=0}^{∞} a_nx^n = \sum_{n=0}^{∞} lim_{x→a} a_nx^n$$
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
6
Views
2K
Replies
105
Views
4K
Replies
15
Views
2K
Replies
13
Views
1K
Replies
7
Views
1K
Back
Top