Penetrating the Rectangular Potential Barrier, E < V0

Chip
Messages
30
Reaction score
1

Homework Statement


Rectangular barrier of width a and height V0 with an E < V0. What is the transmission ratio, T?

Homework Equations


T = C*C/A*A
What am I missing in my attempted solution (variable name = TChip), which is different from the known solution (variable name = TSoln)?

The Attempt at a Solution


(shown in the Octave code below...note the actual solution has a negative concavity, whereas my solution has a positive concavity, but seems to be in the vicinity of the correct solution...this can be seen by running the Octave code).

****

%I wrote this to check my work thus far on solving the GIANT algebra problem of penetrating the rectangular barrier, where E < V0
clear;close;clc;
% setting some constants

hbar = 1.0545718*10^(-34);
m = 9.10938356 * 10^(-31);
a = 10^-20; %cab be purely arbitrary

V0 = 100; %cab be purely arbitrary
inc = 10;
E = inc:inc:(V0-inc);

%wavenumber formulas
k1 = (sqrt(2*m*E))/hbar;
k2 = (sqrt(2*m*(V0-E)))/hbar;

%this section contains the solution
TSoln = (1 + (((sinh(k2*a)).^2)./((4*E/V0).*(1-E/V0)))).^(-1)

%this section contains my work thus far

iVal = i*k2/k1;
BLABLA1 = ( 1 - ((1-iVal).*(e.^(-2*k2*a) )./(1+iVal) ) ) + iVal.* (1 + ((1-iVal).*(e.^(-2*k2*a) )./(1+iVal)));
BLABLA2 = ( 1 - ((1+iVal).*(e.^(2*k2*a) )./(1-iVal) ) ) - iVal.* (1 + ((1+iVal).*(e.^(2*k2*a) )./(1-iVal)));

C = (e.^(-i*k1*a)).* ((e.^(-k2*a)./ ( BLABLA1 ) ) + (e.^(k2*a)./ ( BLABLA2 )));
TChip = 4*(C.*conj(C))

plot (E, [TSoln;TChip]);[/B]
 
Last edited:
Well, maybe I just need to work side my side with someone on this. I just can't seem to get to the answer..
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top