Perform suitable gauge transformations

LeoJakob
Messages
24
Reaction score
2
Homework Statement
Let the electromagnetic potentials be given by
$$
\Phi(\vec{r}, t)=-(\vec{a} \cdot \vec{r}) t, \quad \vec{A}(\vec{r}, t)=-\frac{\vec{a} r^{2}}{4 c^{2}}, \quad \vec{a}=\text { const. }
$$
Perform suitable gauge transformations
$$
\begin{array}{l}
\vec{A}(\vec{r}, t) \longrightarrow \vec{A}^{\prime}(\vec{r}, t)=\vec{A}(\vec{r}, t)+\vec{\nabla} \chi(\vec{r}, t), \\
\Phi(\vec{r}, t) \longrightarrow \Phi^{\prime}(\vec{r}, t)=\Phi(\vec{r}, t)-\frac{\partial \chi(\vec{r}, t)}{\partial t}
\end{array}
$$
so that the potentials comply with the respective gauge condition:

$$(i) \Phi^{\prime}=0 $$

$$(ii) \text{Lorenz gauge: } \vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t}=0 $$

Hint: To solve the differential equations for the gauge function ## \chi(\vec{r}, t) ##, use that ## \square\left[(\vec{a} \cdot \vec{r})(c t)^{2}\right]=-2(\vec{a} \cdot \vec{r}) ##.


Verify your solution.
Relevant Equations
$$\vec{B}(\vec{r}, t) = \vec{\nabla} \times \vec{A}(\vec{r}, t), \quad \vec{E}(\vec{r}, t) = -\dot{\vec{A}}(\vec{r}, t) - \vec{\nabla} \Phi(\vec{r}, t), \\
\Delta \Phi + \frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A}) = -\frac{\rho}{\varepsilon_{0}}, \quad \left(\Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A} - \vec{\nabla}\left(\vec{\nabla} \cdot \vec{A} + \frac{1}{c^{2}} \dot{\Phi}\right) = -\mu_{0} \vec{j}, \\
\square \equiv \Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}
$$
Hello, here is my solution attempt:

(i)

$$ \begin{aligned} 0 & =\Phi^{\prime}=\Phi-\frac{\partial \chi}{\partial t} \Rightarrow \Phi=\frac{\partial \chi}{\partial t} \\ & \Rightarrow \int \Phi dt=\chi \\ & \Rightarrow \chi=\int \limits_{0}^{t}-(\vec{a} \cdot \vec{r}) t^{\prime} d t=-\frac{1}{2}(\vec{a} \cdot \vec{r}) t^{2}\end{aligned} $$

(ii)

$$ \begin{align*}
&\vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \phi^{\prime}}{\partial t}=0 \\
&\Leftrightarrow \vec{\nabla} \cdot \vec{A}^{\prime}=-\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t} \text{(I) }\\
&\vec{\nabla} \cdot \vec{A}^{\prime}=\vec{\nabla} \cdot(\vec{A}+\vec{\nabla} \chi)=\vec{\nabla} \cdot \vec{A}+\Delta \chi \text{(II) }\\
&\frac{\partial \Phi^{\prime}}{\partial t}=\dot{\Phi}-\ddot{\chi}=\frac{\partial}{\partial t}(\Phi-\dot{\chi}) \text{(III) }\\
&=-\vec{a} \cdot \vec{r}-\frac{\partial^2 \chi}{\partial t^2} \text{ with } \dot{\Phi}=\frac{\partial}{\partial t}(-\vec{a} \cdot \vec{r} t)=-\vec{a} \cdot \vec{r} \\
&\vec{\nabla} \cdot \vec{A}=-\frac{1}{4 c^{2}}\left(\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} r^{2} \\
a_{2} r^{2} \\
a_{3} r^{2}
\end{array}\right) \\
&=-\frac{1}{4 c^{2}} \cdot 2(a_{1} \chi+a_{2} y+a_{3} z) \\
&=-\frac{1}{2 c^{2}} \vec{a} \cdot \vec{r}=\frac{1}{2 c^{2}} \dot{\Phi} \\
&\text{(I) } \frac{1}{2 c^{2}}A\dot{\Phi}+\Delta \chi=-\frac{1}{c^{2}}(\dot{\Phi}-\ddot{\chi}) \\
&\stackrel{\cdot c^2}{\Leftrightarrow} \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 \\
\end{align*} $$

Can somebody help me with the next step?
 
Physics news on Phys.org
LeoJakob said:
$$ \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 $$
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
 
TSny said:
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$

I have thus found a Lorenz gauge ##\chi## for the potentials ## \Phi## and ##\vec A##.
 
Last edited:
LeoJakob said:
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$
Your work looks good. I agree with your result for ##\chi##. I think the problem statement wants you to write explicitly your results for ##\vec A'## and ##\chi'## for parts ##(i)## and ##(ii)##. The results are not unique since ##\chi## is not unique.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top