Perturbation Techniques and Theory for Nonlinear Systems

sharrington3
Messages
6
Reaction score
0

Homework Statement


Given the equation
\ddot{\theta}=\Omega^2\sin{\theta}\cos{\theta}-\frac{g}{R}\sin{\theta}
Determine a first-order uniform expansion for small but finite theta.

Homework Equations


Other than the equation above, none so far as I am aware.


The Attempt at a Solution


The only thing I could think to do was try to solve this differential equation via the method of undetermined coefficients, which I do not think is right at all. I then planned to expand my solution in a Taylor series about 0. This is from Ali Hasan Nayfeh's Introduction to Perturbation Techniques. My professor gave us a packet of the fourth chapter of the aforementioned text as a basis to solve this and other problems. Nowhere in the text does it give a clear example of what exactly a "first order uniform expansion" is, nor do I even know where to begin. My professor's research interests lie in nonlinear dynamics and chaos, and I fear he is going a little too in depth for my second year physics course. Thank you for any input.
 
Physics news on Phys.org
I'm only making an educated guess here, but I think what you want to do is expand the trig functions using the Taylor series and retain only the lowest-order non-vanishing term. This will leave you with a linear second-order differential equation. Then you want to convert this second-order equation into a system of two first-order equations.
 
I think that finding the solution to the original ODE and then expand it using Taylor series is equivalent to solve the "simplified" ODE that vela suggests. Vela's way is much easier for sure.
 
That's something along the lines of what I thought of doing. I read up on the subject, and "uniform expansion" only means "without secular terms", so the approximation of my system won't blow up as t→∞. I'm just going to do the Taylor series DE thing. Thanks for your input, guys. It's greatly appreciated.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top