Picard-Vessiot Extension over a Differential Field?

KarmonEuloid
Messages
3
Reaction score
0
Given a differential field F and a linear algebraic group G over the constant field C of F, find a Picard-Vessiot extension of E of F with G(E/F)=G:

This isn't homework, just something I saw in a book that I was curious about. The author says that this can be shown but doesn't illustrate how. Can anyone help?
 
Physics news on Phys.org
Caveat: I know nothing about this subject. I checked Wikipedia for the relevant definitions, and I believe this works. First find a Picard-Vessiot extension E/F with G(E/F)=GL_n(C) (such a thing does exist, right??). Next, given a linear algebraic group G, view it as sitting in some GL_n(C)=G(E/F), and then consider the fixed field E^G (this notion makes sense, right??). If the Galois theory of Picard-Vessiot extensions works like normal Galois theory (i.e. if you have an analogue of Artin's theorem), then E/E^G should be Picard-Vessiot and G(E/E^G) should be G.

Note that this proof is identical to the standard proof that every finite group G is the Galois group of some extension. (The role of GL_n above is played by S_n here.)
 
morphism said:
Caveat: I know nothing about this subject. I checked Wikipedia for the relevant definitions, and I believe this works. First find a Picard-Vessiot extension E/F with G(E/F)=GL_n(C) (such a thing does exist, right??). Next, given a linear algebraic group G, view it as sitting in some GL_n(C)=G(E/F), and then consider the fixed field E^G (this notion makes sense, right??). If the Galois theory of Picard-Vessiot extensions works like normal Galois theory (i.e. if you have an analogue of Artin's theorem), then E/E^G should be Picard-Vessiot and G(E/E^G) should be G.

Note that this proof is identical to the standard proof that every finite group G is the Galois group of some extension. (The role of GL_n above is played by S_n here.)

This seems to work to me. I reposted it on MathOverflow (giving you credit of course) to see if they could verify it (as that is where the question originally came from), although I would also appreciate it if someone here could check this or provide an alternate answer. Thanks.
 
I read a bit more about this topic and can now confirm that the above proof is correct, provided the field of constants C is algebraically closed. This assumption is apparently necessary for the analogue of Artin's theorem to hold for Picard-Vessiot extensions. See Chapter 6 of Crespo and Hajto, Algebraic Groups and Differential Galois Theory (AMS 2011), freely available here. [Also note: Exercise 7 shows that, for any n, there is a Picard-Vessiot extension E/F with G(E/F)=GL_n(C).]

I don't know what happens if C is not algebraically closed.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top