Su Solberg said:
I am curious whether I can estimate the head when system is feeded with slurry by the clear water head which majorly come from K by mutiplying Ratio of Slurry S.G. to Clear water.
(K is base on expermental method of clear water?? I think.)
I think what you're asking is can you multiply K by the ratio for your slurry divided by that of water. (ie: multiply K by specific gravity of your slurry.) I don't think that will work at all. Let's start over.
There are methods out there that allow adjusting K for viscosity. The simplest thing to do is to simply use the L/D ratio for your restrictions where available. For example, an elbow may have an L/D ratio of 5, so just use that and determine the friction factor normally. That way you eliminate the use of K and you use equivalent length instead for the various restrictions.
You might also consider using the two-K and three-K method as described http://www.cheresources.com/eqlength.shtml" . I'm not familiar with these methods but from what I understand, they are useful in correcting for actual Reynolds number. Probably the best thing to do would be to pull the original papers (listed below) and review them. I'd be interested in what you find out, so if you decide to do so, feel free to update us on what you find out.
One other web page looks promising
http://www.cheresources.com/invisio...ethod-for-excess-head-loss-in-pipe-fittings/". If you download the Excel spread sheets, feel free to post them here so I don't have to join that site!
1. Hooper, W. B., The Two-K Method Predicts Head Losses in Pipe Fittings, Chem. Eng., p. 97-100, August 24, 1981.
2. Darby, R., Correlate Pressure Drops through Fittings, Chem. Eng., p. 101-104, July, 1999.