Polar Coordinates Homework: Converting to Cartesian and Strain Rate Tensor

JSBeckton
Messages
224
Reaction score
0

Homework Statement



The velocity field for a line source in polar coordinates (r,theta) is given by:

V=m/(2(pi)r) (in the "e" little r vector direction)

convert to cartesian and calculate the strain rate tensor.

Homework Equations



R=Sqrt(x2+y2);
Theta=ArcTan(Y/X);

Cartesian form:
X= R*cos(Theta)
Y= R*sin(Theta)


The Attempt at a Solution



I just need to convert this, i understand how to get the strain rate tensor. I know how to compute between polar and cartesian but need theta. Or am I suppposed to assume theta=0?

if theta=0 then y=0 andf x=r*sin(theta) but what do i use for r? If i solve for r i th efirst equation I get r=m/(2pi)

x=rcos(0)
x=m/(2pi)

This doesn't seem right becasue I need a velocity field in terms of V(u,v) where u and v are in terms of x and y.

Any help is greatly appreciated, Thanks
 
Physics news on Phys.org
I do not know what exactly you are asking, but if you are just asknig how to get from cartesian coordinates to polar ones than

theta=arctan(y/x) while R=sqrt(x^2+y^2)
 
I understand that as stated in my post under "Relevant Equations", thanks anyways
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top