Potential energy of a displaced mass on a spring

AI Thread Summary
The discussion focuses on calculating the potential energy U(x) stored in a spring with a non-linear restoring force, given by F(x) = (-k1x) + (k2x^2). The user attempts to integrate this force to find the potential energy, resulting in ΔU = -k1(½x0^2) + k2(⅓x0^3). However, there is confusion regarding the application of the standard potential energy formula U = ½kx^2, which is only valid for linear springs. Participants suggest refining the approach to ensure consistency in the equations used, particularly emphasizing that ΔU should reflect a difference between two states. The conversation highlights the importance of correctly interpreting the equations for potential energy in the context of non-linear spring behavior.
AsadaShino92
Messages
21
Reaction score
0

Homework Statement



A spring of negligible mass exerts a restoring force on a point mass M given by F(x)= (-k1x)+(k2x^2) where k1 and k2 >0. Calculate the potential energy U(x) stored in the spring for a displacement x. Take U=0 at x=0.

Homework Equations



ΔU=∫F(x)dx
U=½kx^2

The Attempt at a Solution


Using the equation above I tried to find the potential energy of the spring after it has been displaced by some distance x. I integrated F(x) from x=0 to some displacement x=x0.

ΔU=∫(-k1x)+(k2x^2)dx

ΔU=-k1½x0^2+k2⅓x0^3

Is this the right way in finding the potential energy?
 
Physics news on Phys.org
Almost. Basically you are going to refine your second relevant equation. So if ##k_2 = 0## you should find it back. Do you ?

[edit] hint: what about the discrepancy between 1st and 2nd relevant equation ?
 
BvU said:
Almost. Basically you are going to refine your second relevant equation. So if ##k_2 = 0## you should find it back. Do you ?

[edit] hint: what about the discrepancy between 1st and 2nd relevant equation ?

So then I can use the fact that ΔU= Uf-Ui= ½kxf^2-½kxi^2. Where f is final and i is initial?
If this is correct, then xi=0 and that term drops out. Then I would be left with ½kxf^2 = -k1½x0^2+k2⅓x0^3
 
AsadaShino92 said:
U=½kx^2
No. As BvU was hinting, that equation is only valid if F(x)=-kx.
AsadaShino92 said:
So then I can use the fact that ΔU= Uf-Ui= ½kxf^2-½kxi^2.
No, for the reason given above.
AsadaShino92 said:
ΔU=-k1½x0^2+k2⅓x0^3

Is this the right way in finding the potential energy?
Yes, except that you have a Δ on the left, implying a difference between two different states. On the right, you have assumed that one of those states is x=0. Try to write it consistently.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top