Potential in caternary problem

  • Thread starter Thread starter thehoten
  • Start date Start date
  • Tags Tags
    Potential
AI Thread Summary
The discussion focuses on the equilibrium shape of a flexible but inextensible chain suspended between two non-vertically aligned points. The chain reaches a position of minimal potential energy, with the potential energy of a small segment defined by the equation delta p = y(1+y'^2)^(1/2) delta x. Participants express confusion about the derivation of this potential energy formula, particularly the notation used for height and slope. The relationship between the slope, represented as y', and the chain's length is clarified through geometric considerations. The conversation emphasizes the complexity of understanding the potential energy in the context of catenary problems.
thehoten
Messages
5
Reaction score
0
a flexible but inextensible chain having uniform mass density is suspended between two points (of course not vertically aligned). Find the shape of the equilibrium of the chain.

The chain will settle down to a position of minimal potential energy. Let the suspending points be (a,y(a)) and (b,y(b)) where (without loss of generality) b>a and y(b)>y(a). The potential energy delta p (relative to y(a)) of a portion of chain corresponding to small delta x is gievn by delta p = y(1+y'^2)^(1/2) delta x.

I don't understand where this potential comes from
 
Physics news on Phys.org
I don't recognise it either apart from the square root but its often difficult to work backwards from part of an answer- several good derivations can be found at

http://en.wikipedia.org/wiki/Catenary

Regards

Sam
 
y' is the slope, tan(θ). Squaring, adding 1 and sqrting gives sec(θ).
Multiplying that by dx gives ds, the length of the section of chain (hypotenuse). Taking the density to be 1, that's also its mass.
The final factor, y, seems intended to be its height above the reference point, y(a), but that seems a very confusing notation.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top