Power Factor Correction (open leg on a floating wye)

AI Thread Summary
A switch failure on the A phase of a floating wye connected capacitor bank led to a series of issues, including a blown C phase fuse and subsequently a blown B phase fuse after repairs. The contractor indicated that the open phase caused overcurrent in the other two phases, which raised questions about expected current reduction. The system, which operates at 13.8 kV and is designed for industrial loads, returned to normal after replacing the faulty switch. It was clarified that with the A phase open, the remaining phases experience 50% of the phase-to-phase voltage, aligning with the expected 86.6% current reduction. The discussion concludes that the initial assumptions about current behavior were correct based on the capacitor bank's configuration.
RBloomer
Messages
2
Reaction score
0
We had a switch fail to close on the A phase of a floating wye connected capacitor bank. The C phase fuse was found to be bad and was replaced, however the B phase fuse then blew. The bad switch was then found and replaced. After that the system operated normally. The contractor said the open phase caused the overcurrent on the other two phases. I would have thought that the current on the remaining circuit would reduce to 86.6% of normal. What am I missing?
 
Engineering news on Phys.org
RBloomer said:
We had a switch fail to close on the A phase of a floating wye connected capacitor bank. The C phase fuse was found to be bad and was replaced, however the B phase fuse then blew. The bad switch was then found and replaced. After that the system operated normally. The contractor said the open phase caused the overcurrent on the other two phases. I would have thought that the current on the remaining circuit would reduce to 86.6% of normal. What am I missing?
Welcome to the PF.

Others will be able to give you a better answer than I can, particularly @anorlunda but it would help to know more about the situation. What is the nature of the load? If the load is mostly a constant-power type of load (like switching power supplies), then the current will go up in the other phases to try to supply the same power.
 
The capacitor bank consists of 6 400 Kvar capacitors, 2 in parallel per phase, connected in a floating wye. Each leg has a series 11.5 mH inductor. It operates at 13.8 kV. It is doing power factor correction for typical industrial loads i.e. many motors, ac inverter drives etc.
 
With a floating wye connection, each phase of the capacitor bank sees 13.8/sqrt(3) kV or 57.7% of the phase to phase voltage under normal conditions.

If you energize the same capacitor bank with A phase open (i.e., switch fails to close on this phase), you still have phase to phase voltage across the other two phases. Under this condition, these two phases would be seeing 13.8/2 kV or 50% of the phase to phase voltage.

So my conclusion is that you are not missing anything at all. 50/57.7 is the 86.6% that you expected if you are dealing with the current to the capacitor bank and not the line current.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top