Does Using Maximum Coefficients Determine the Smallest Radius of Convergence?

aaaa202
Messages
1,144
Reaction score
2

Homework Statement


Let Ʃanx^n and Ʃbnx^n be two power series and let A and B be their converging radii. define dn=max(lanl,lcnl) and consider the series Ʃdnx^n. Show that the convergence radius of this series D, is D=min(A,B)


Homework Equations


My idea is to use that the series Ʃ(lanl+lbnl)x^n has convergence radius min(A,B) and use that lanl+lbnl≥dn. Do you agree that this is a good idea from a rigorous perspective? Last assigment I really got punished for not being rigorous enough, so I want to make sure this time, that I do it properly.


The Attempt at a Solution


 
Physics news on Phys.org
aaaa202 said:

Homework Statement


Let Ʃanx^n and Ʃbnx^n be two power series and let A and B be their converging radii. define dn=max(lanl,lcnl) and consider the series Ʃdnx^n. Show that the convergence radius of this series D, is D=min(A,B)


Homework Equations


My idea is to use that the series Ʃ(lanl+lbnl)x^n has convergence radius min(A,B) and use that lanl+lbnl≥dn. Do you agree that this is a good idea from a rigorous perspective? Last assigment I really got punished for not being rigorous enough, so I want to make sure this time, that I do it properly.

That will show the radius of convergence of ##\sum d_n## is at least min(A,B). You would still have to show it isn't greater than that.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top