What is the Energy Transmitted by a Plane EM Wave Passing Through a Window?

AI Thread Summary
The discussion focuses on calculating the energy transmitted by a plane electromagnetic (EM) wave passing through a window. The electric field of the wave is given, and the amplitude of the magnetic field is derived using Maxwell's equations, resulting in a value of 0.13 A/m. For energy transmission, the average energy of the wave is calculated using the Poynting vector, leading to 0.597 kJ when the wave is incident normally and 0.517 kJ at an angle of 30 degrees. The calculations are verified by confirming the relationship between the electric and magnetic fields aligns with the speed of light. Overall, the thread provides a detailed approach to solving the problem using fundamental physics principles.
Wesley Strik
Messages
8
Reaction score
1

Homework Statement


In free space, the electric field of a plane EM wave is given by: E(z,t)= 50î cos[wt-kz]
where w= 6 x 10^15
and k=2x10^7
(A) calculate the amplitude of the magnetic field H
How much energy does this wave transmit in 30s when it passes through a window of dimensions 2mx3m if the EM wave is incident:
(b) normally on the window
(c) obliquely at an angle of 30 degrees with respect to the window normal

Homework Equations


Maxwell:
curl E= dB/dt
--------------- relation H and B---
H=B/mu0
mu0=4pi x 10 ^-7
----------------------------------------

The Attempt at a Solution


For (A) I relate the two fields via the Maxwell curl E= dB/dt which yields:
50k j cos(wt-kz) = w B
such that B= 50k/w cos (wt-kz)
the amplitude becomes 50k/w=(10^9)/(6x10^15)= 1/6 x 10^-6
now relate this to H=B/mu0 ---> (1/6 x 10^-6)/(4pi x 10^-7)= (10/6) / (4pi) =0.13 A/m

did I d (A) correclty, does the outcome make sense?
Also, I have no clue how to do (b) and (c)?
 
Physics news on Phys.org
anyone?
 
Okay so I found an equation for the average energy of a plane wave:

<S>= Em2/(2 c μ0) where c is the speed of light, mu the magnetic permeability of free space, Em=50 in this case. <S> is the averaged Poyting vector, such that ENERGY=<S> *area* time, which gives me, when I plug in the numbers: (area =3x2, t=30s)

for (b) I get: 0.597 kJ
for (c) I get: Cos[π/6] *0.859=0.517 kJ

*** I checked my Bm field of (a) by checking that Em/Bm=c=3x10^8, which it did, so I assume I can divide by mu naught correctly
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top