Practicing Validity: Using Rules of Inference to Prove Arguments

  • Thread starter Thread starter completely lost
  • Start date Start date
  • Tags Tags
    Practice problems
AI Thread Summary
The discussion revolves around using rules of inference to prove various logical arguments for an introductory logic class. The original poster presents ten arguments along with their conclusions, seeking assistance in validating them. Participants express concerns about the validity of the first argument, suggesting it may be invalid based on counterexamples. There is a focus on understanding how to group negations and apply logical rules correctly. Overall, the thread emphasizes the importance of effort and comprehension in mastering logical proofs.
completely lost
Messages
2
Reaction score
0
I have about 10 questions, I hope someone can take the time to help me with. The directions are: "Use the 18 rules of inference, supply a proof for each of the following arguments." So, here goes:

1.) 1. (R v X) > (A > B)
2. ~ Q > ~ C
3. ~ C > Z
4. R .Y
5. Q v A /Z v B

2.) 1. E . (P . B)
2. (E . B) >~ (P.~M) /E.M

3.) 1. ~(S v C)
2. ~(S . R) > (C v D) /D

4.) 1. D > P /(I . D) > P

5.) 1. P v (Y . H)
2. (P v Y) >~ (H v C)
3. (P .~ C) > (K . X) /X v T

6.) 1. A = J
2. A v J
3. A > (J > W) /W

7.) 1. ~Q> (C . B)
2. ~T> (B . H)
3. ~(Q . T) /B

8.) 1. (U . P) >Q
2. ~ O > U
3. ~ P > O
4. ~ O . T /Q

9.) 1. (J>K) . (~O>~P)
2. (L > J) . (~M>~O)
3. ~K> (L v~ M)
4. ~K . G /~P

10.) 1. (F . M) > (S v T)
2. (~S v A) > F
3. (~S v B) > M
4. ~S . G /T

Okay, that's all the questions. Now here is the legend key:
/ separates what the conclusion is supposed to be.
. conjunction
v disjunction
> implication
= biconditional
~ negation

This is for an introductory to logic class. I hope someone can help. Thank you.
 
Physics news on Phys.org
1.) 1. (R v X) > (A > B)
2. ~ Q > ~ C
3. ~ C > Z
4. R .Y
5. Q v A /Z v B
I read that as:
1. (R v X) > (A > B)
2. (~ Q) > (~ C)
3. (~ C) > Z
4. R .Y
5. Q v A
C. Z v B
By my calculations, this argument is invalid. Counterexample: (R, Y, C, Q) are true and (Z, B, A) are false (X is true or false). Did you copy it correctly? How are you grouping negations?
 
Here are some hints for the next three to get you started.
2) Can you derive ~(P . ~M)?
3) Can you derive (~S v ~R)?
4) Do you have the rule: ((P . Q) > R) = (P > (Q > R))?
 


honestrosewater said:
I read that as:
1. (R v X) > (A > B)
2. (~ Q) > (~ C)
3. (~ C) > Z
4. R .Y
5. Q v A
C. Z v B
By my calculations, this argument is invalid. Counterexample: (R, Y, C, Q) are true and (Z, B, A) are false (X is true or false). Did you copy it correctly? How are you grouping negations?
Yes I did copy it correctly. This is directly from my teacher, too. I don't think he feels it's invalid. And, the ones that you put parentheses around, he didn't. I don't know if that matters or not. I really don't get anything about this class at all. As far as how am I grouping negations, I have no idea on that either. Thanks.
 
completely lost said:
Yes I did copy it correctly. This is directly from my teacher, too. I don't think he feels it's invalid.
Well, regardless of what he may feel, I checked it again, and it is invalid. Do you know how to check an argument for validity?
And, the ones that you put parentheses around, he didn't. I don't know if that matters or not. I really don't get anything about this class at all. As far as how am I grouping negations, I have no idea on that either. Thanks.
I added the parentheses to make clear what was being negated.
If you have no idea what you're doing, there isn't much I can do for you today. If you have a problem understanding something specific, I'll try to help. But we don't do people's homework for them here, so you'll have to put in some effort.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top