You are talking about electron degeneracy pressure. What you do is, use the density to determine the volume of the "box" each electron occupies (1/density). Now do a quantum mechanical "particle in a box" calculation to find the energy of that electron. Now take the derivative with respect to volume of the energy-- that's the pressure.
Physically, what is happening here is that even at 0K, the electron wave function has a second derivative so that it can stay inside the box of volume allowed to each electron (to keep them from infringing on the states of the other Fermions). That second derivative (a la Schroedinger) implies the presence of kinetic energy, even at 0K. The presence of kinetic energy means there is momentum flux, and where there's momentum flux, there's pressure.