then i made a mistake in it sorry...i mean we can always choose and a for \pi(x^{a}) so the error term goes like this O(x^e) with e can be chosen to be the smallest number it ocurs to us (for example e=10^{-100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000} i know i,m exagerating but this is the sense of my proof,i have reduced the error term to O(x^e) with choosing a=dA and making A tends to infinite the error term would go like this O(x^e) with e an infinitesimal number ( i know this exist i have seen proofs with results a+e being e an infinitesimal number.
-The formula for \pi(x^a) is a triple integral..how would we calculate it?..the solution is to use Gauss-Hermite Quadrature formula so the integral becomes:
\sum_{i,j,k}C_{i,j,k}W(x_i,x_j,x_k)F(x_i,x_j,x_k)
where the C.s are constants, W is a weight function in the form W(x,y,z)=exp(-x^{2}-y^{2}-z^{2}) and F is the integrand of the our triple integral...in fact is a complex integral so we first have to make the change of variable s=c+iu , q=d+iv (the i,j and k indexes are summed over the roots of Hermite Polynomials)...
-Of course the smallest error term would be O(0) but with my method the error goes like O(x^e) for very small e it is almost like 1+eln(x),that is if we ignore the lineal term,the error would be constant for every x, including the error lineal term the error would go like ln(x) and as far as i know the smallest error term for prime counting function is O(x^{2/3}ln(x)) mine is smaller...