Primes, pigeon holes, modular arithmetic

HmBe
Messages
45
Reaction score
0

Homework Statement



q.png



The Attempt at a Solution



Don't have a clue how to even start this one, sorry.
 
Physics news on Phys.org
I don't have much time to help with this one. Do you recall what the pigeonhole principle states?

The n elements of a set get mapped to n-1 elements of another set, so no matter what, there are elements ai and aj which get mapped to the same element or the same 'hole'.
 
Yeah I'm happy with the pigeon hole principle, although I can't quite see how it applies as a can be any natural number or 0, so surely the size of set A is infinite?
 
HmBe said:
Yeah I'm happy with the pigeon hole principle, although I can't quite see how it applies as a can be any natural number or 0, so surely the size of set A is infinite?

That can't be meant, because the pigeonhole principle can only be used if ##\mathcal A## is finite. So ##0\leq a,b<\sqrt p## probable means ##(0\leq a<\sqrt p)## and ##(0\leq b<\sqrt p)##. This would give you ##|\mathcal A| < (\sqrt p+1)^2 = p+2\sqrt p+1##.

Now I'd look at the function ##f(x,y)=x^2+2y^2## for all pairs ##(x,y)\in\mathcal A##.
 
Ah right yeah I thought they were too separate inequalities which really messed me up. Quite simple now.

Got down to this..

(b-b')^2 + 2(a-a')^2 = pk

for some integer k.

I'm having a little struggle getting rid of the k (so to speak).

a, b, a', b' are all < sqrt(p)

so

(b-b')^2 + 2(a-a')^2 < 3p

so k < 3

if k = 1 we're fine, no worries.

but what about the k = 2 case? I feel like I should return to the x^2 = -2 (mod p) to get some fact about p I could use...?

Thanks for the help.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Replies
4
Views
1K
Replies
30
Views
3K
Replies
6
Views
2K
Replies
16
Views
4K
Replies
4
Views
2K
Replies
16
Views
3K
Replies
2
Views
1K
Back
Top