Probability current inside the barrier of a finitie square potential well

AI Thread Summary
The discussion focuses on deriving the probability current density Jx for a finite square potential well using the wave function ψ = C*e^(kx) + D*e^(-kx). The initial expression for Jx is derived and simplified to Jx = (i*hbar/m)*[D*conj(D) - C*conj(C)]. The user seeks guidance on how to manipulate this result to reach the desired form, Jx = (i*k*hbar/m)[c*conj(D) - conj(C)*D]. The conversation highlights the need for clarification on the mathematical steps required to transition between these two expressions. Assistance is requested to complete the derivation effectively.
StephenD420
Messages
97
Reaction score
0
if ψ=C*e^(kx) + D*e^(-kx)
show that the probability current density is
Jx=(i*k*hbar/m)[c*conj(D) - conj(C)*D]

since Jx= (i*hbar/2m)*[ψ * derivative of conj(ψ) - conj(ψ)*derivative of ψ]
ψ=C*e^(kx) + D*e^(-kx)
conj(ψ)= conj(C)*e^(-kx) + conj(D)*e^(kx)
ψ ' = C*k*e^(kx) - D*K*e^(-kx)
derivative of conj(ψ) = -conj(C)*k*e^(-kx) + conj(D) *k*e^(kx)

plugging in and simplifying I get

Jx = (i*hbar/2m)*[-C*conj(C)*k - k*conj(C)*D*e^(-2kx) + C*conj(D)*k*e^(2kx) + D*conj(D)*k -C*conj(C)*k -C*conj(D)*k*e^(2kx) + conj(C)*D*k*e^(-2kx) +D*conj(D)*k]

which simplifies to
Jx = (i*hbar/2m)*[-2*c*conj(C)*k + 2*D*conj(D)*k]
Jx = (i*hbar/m)*[D*conj(D) - C*conj(C)]

how do I get from here to
Jx=(i*k*hbar/m)[c*conj(D) - conj(C)*D]

Thanks so much for any help you guys can provide. I am really stuck as to what to do next.
Thanks.
Stephen
 
Physics news on Phys.org
bump...
Please help me with a nudge to finish this problem up.

Thank you for any help you guys can give me. I really appreciate it.
Stephen
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top