Probability Density for Interferometer

AI Thread Summary
The discussion focuses on a problem related to calculating the probability density for an interferometer, with a specific emphasis on correcting a mathematical equation that involves trigonometric identities. The user expresses frustration with simplifying the equation and seeks guidance on their initial work. They mention attempting to use Euler's formula to separate real and imaginary parts but are still struggling to arrive at the correct answer. The user emphasizes their desire to understand the underlying mathematics rather than just receiving a solution. Assistance is requested to clarify their approach and provide direction in resolving the issue.
Einstein2nd
Messages
25
Reaction score
0
Hey guys. All of the info for the problem is in a picture (sorry for not using the template).

I've tried working on this for ours and I still can't seem to get the trig identities right :(

http://img208.imageshack.us/img208/1770/assignmentquestion2.jpg

NOTE THAT THERE SHOULD BE ANOTHER BRACKET ON THE VERY END OF THE EQUATION FOR THE PROBABILITY DENSITY. IT SHOULD HAVE sin(delta)), NOT sin(delta) AS IT CURRENTLY HAS.

from that final step, I've done many things by both hand and scientific notebook and I just can't seem to get things to simplify down properly. There is no way I could possibly post all of the different things I've tried but don't worry, I'm not simply looking for a copy-paste answer into homework. I want to be able to understand the working.

Please clarify my initial working and steer me in the correct direction. I'm pretty sure that I understand the physics, it's just the maths...
 
Last edited by a moderator:
Physics news on Phys.org
Any chance of some help?

I was told to use Euler's formula (which I have tried in the past) and then separate the real and imaginary parts and then add the squares. I'm not getting the answer correct thoguh by doing this :(
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top