ArcanaNoir
- 778
- 4
Homework Statement
The joint probability density function of the random variable (X, Y) is given by:
f(x,y) = \frac{2x}{y^2} \text{where} \; 0 \leq x\leq 1 \; \text{and} \; y\geq 1
and 0 elsewhere.
Find the probability density function of the folowing random variable:
U=X+Y
Homework Equations
I'm not sure of this equation, (have I mentioned my book should be burned?) but I think ultimately I'm looking for
\int_{-\infty }^{\infty } f(u-v,v) \mathrm{d} v
The Attempt at a Solution
U=X+Y
x= u-v
y=v
the jacobian of the transformation is 1, so we can leave out further mention of it in equations.
My integral is \int_a^b \frac{2u-v}{v^2} \mathrm{d} v
I'm not sure about the bounds. Since v=y, should the bounds on v equal the bounds on y? That is, from 1 to infinity?
I already tried that and got a non-convergent integral (the sad story of my day today) :(
\int_1^{\infty } \frac{2u-v}{v^2} \mathrm{d} v =
\int_1^{\infty } \frac{2u}{v^2} \mathrm{d} v - \int_1^{\infty } \frac{1}{v} \mathrm{d} v =
2u \int_1^{\infty } v^{-2} \mathrm{d} v - \int_1^{\infty } \frac{1}{v} \mathrm{d} v =
-2u(\frac{1}{v} |_1^\infty ) - \mathrm{ln} v |_1^{\infty }
And since \mathrm{ln} (\infty ) = \infty, part of my problem says 0-\infty Which is not good...
Last edited: