Probability of finding a particle in the ground state

Sam Harrison
Messages
2
Reaction score
0

Homework Statement



A particle is prepared in the state \psi (x) = \frac{1}{\sqrt{L}} in a region 0 < x < L between two hard walls (particle in a box). Calculate the probability that the particle is found in the ground state when its energy is measured.

Homework Equations



This question is worth 10 marks, so I presume it's not as simple as squaring the wave function to find the probability. However I'm just not sure what else to do, a hint in the right direction would be greatly appreciated.


The Attempt at a Solution



\left| \psi (x) \right|^{2} = \frac{1}{L}

That's all I can think of doing. I've checked the given wave function is normalised, which it is.
 
Physics news on Phys.org
You need to use Fourier Series. You know the normalised solution to Schrodingers equation is root(2/L)sin(nPix/L)

Let the initial wave function be f(x)=1/root(L)

So f(x)=root(2/L)[sum of (c_n)sin(nPix/L)

So c_n=root(2/L)Integral 0 to L of f(x)sin(nPix/L) by Fourier methods

The probability of a particular state is the square of c_n if the wave function is normalised. I make your answer 8/(Pi)^2

Does that make sense?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top