Probability of getting two boys question

  • Thread starter Thread starter Dell
  • Start date Start date
  • Tags Tags
    Probability
Dell
Messages
555
Reaction score
0
in a family with 2 children , what is the possibility that there will be 2 boys if we know that at least one is a boy,

the correct answer is 0.33 but how do i get it,


the way i see it we have 4 options
boy girl
girl boy
boy boy
girl girl

therefore only one is a boy- boy option, therefore p=0.25
 
Physics news on Phys.org
i see my problem, the options are
boy girl
girl boy
boy boy

so it really is 1/3, but how do i get this using equations

using P(X/Y) etc
 
What you have done is a perfectly valid method and far easier than "using equations".
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top