What is the Solution to the Overlapping Circles Number Problem?

  • Thread starter Thread starter Chris
  • Start date Start date
AI Thread Summary
The discussion revolves around a mathematical problem involving overlapping circles where numbers must be placed in distinct regions to achieve equal sums in each circle. Solutions for three and four circles were found easily, with totals of six and ten respectively. The challenge increases with five and six circles, where no clear pattern or formula has been established for predicting arrangements or totals. Participants express a desire for insights into whether solutions exist for all circle counts greater than two and if multiple solutions are possible. The conversation highlights the potential for combinatorial mathematics to provide deeper understanding of the problem.
Chris
Messages
8
Reaction score
0
This is a problem which was given to my six-year-old cousin:
(you'll probably need a bit of paper)

Imagine three circles A, B and C in a straight line. A overlaps B and B overlaps C such that there are 5 distinct regions. You have to place the numbers 1-5, using each number only once, into the five regions, such that the total in each circle is the same. My cousin had to do this for 3 circles and 4 circles (i.e. 7 regions and numbers 1-7)

3 circles is easy... the regions would be 5 1 3 2 4
the total in each circle is six

4 circles is a bit harder and this is when my cousin's mum asked me (I don't think my cousin even understood the problem in the first place :eek: ). I got it pretty quickly with trial and error and a little bit of common sense:

7 3 2 5 1 4 6
the total in each circle is 10

So my cousin got his homework right. I suspect it was supposed to just practise their adding, but by now I was quite intruiged. I wondered whether there is a solution for all possible numbers of circles > 2. (2 circles has no solution, and 1 has a pretty obvious solution). By trial and error I worked out the total for 5 circles, which is 11:

9 2 5 4 6 1 7 3 8

By writing a rudimentary computer program, my friend worked out that the total for 6 circles was 14 (if I remember correctly), but I still cannot see a pattern. For 6 circles the numbers in the outermost regions are not the largest two numbers as they have been in the solutions above. None of the rest of my maths set (I'm seventeen, and doing maths/further maths), or my maths teacher, could find a pattern allowing us to predict the arrangement of numbers, or even the total, given the number of circles.

So:
Can it be proven that there is a solution for all numbers of circles > 2?
Can the arrangement and total in each circle be worked out given the number of circles?
Are there ever multiple solutions for a given number of circles (apart from the reflection)?

I, and my maths set, would be very grateful and interested by any insight anyone can provide.
Chris
 
Mathematics news on Phys.org
For 4 circles 7 2 6 1 3 5 4 is also a solution, with each circle totalling 9.
 
Well spotted chronon. Initially I hadn't considered solutions where the largest numbers aren't in the outermost circles, but that's clearly not the best approach.
That answers the question about multiple solutions!

Chris
 
Bumpety-bump
 
this is intriguing. i have putzed around a bit solving this with linear equations, but so far haven't had any success other than a small amount of info pertaining to which regions should equal other possible entries.

i am sure that a rudimentary course in combinatorics would shed a great deal of light on this problem.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
59
Views
2K
Replies
3
Views
2K
Replies
4
Views
1K
Replies
3
Views
3K
Replies
4
Views
2K
Replies
7
Views
3K
Replies
11
Views
3K
Back
Top