Problem from AP French Special Relativity

george2
Messages
6
Reaction score
0
1.Hi!I need some help with the following problem:
A body of mass m1+dm is connected to a body of mass m2-dm by a spring of constant k and negligible mass.The system is at rest on a frictionless table.A burst of radiation is emitted by the first body and absorbed by the second changing the masses to m1 and m2.If the time of transit of the radiation is negligibly small compared to the period of oscillation show that the maximum extension of the spring is given by:x=cdm\sqrt{\frac{m_{1}+m_{2}}{km_{1}m_{2}}}




2. E=dmc^{2}, E=cp for the photon



3. I think that energy and momentum conservation are needed.However i don't know which are the initial and final moments for which i should apply energy and momentum conservation. This is not exactly a homework exercise as i use the book for self study, so any help will really be appreciated...
 
Physics news on Phys.org
george2 said:
A body of mass m1+dm is connected to a body of mass m2-dm by a spring of constant k and negligible mass.The system is at rest on a frictionless table.A burst of radiation is emitted by the first body and absorbed by the second changing the masses to m1 and m2.If the time of transit of the radiation is negligibly small compared to the period of oscillation show that the maximum extension of the spring is given by:x=cdm\sqrt{\frac{m_{1}+m_{2}}{km_{1}m_{2}}}

I think that energy and momentum conservation are needed. …

Hi george2! :smile:

Yes … and at the time of maximum extension, the relative velocity of the two masses will be zero, which gives you the extra equation you need. :wink:
 
Thanks for your reply!:smile:
I already used the fact that the relative velocity of the two masses will be zero at the time of maximum extension although i forgot to write that in my previous post.However i didn't get the right result.I will try it again later and if i don't find where my error is i will scan my attempt of solution...
 
I tried again but i didn't find the correct result...The fact that "the time of transit of the radiation is negligibly small compared to the period of oscillation" doesn't mean that the second mass has already absorbed the radiation by the time i apply energy conservation for the final moment?
Probably i write wrongly the conservation equations...could you write them?
 
george2 said:
Probably i write wrongly the conservation equations...could you write them?

I could :rolleyes: … but I'm not going to …

you write them! :wink:
 
I tried once more and finally i solved the problem.Anyway, thanks for the help:smile:
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top