Problem with divergent integral

parton
Messages
79
Reaction score
1
I'm confused with the following integral.

Let a > 1.

\int_{a}^{\infty} \left( \dfrac{1}{t} - \dfrac{1}{t-1} \right) ~ dt = \left[ \log \left| \dfrac{t}{t-1} \right| \right]_{a}^{\infty} = - \log \left| \dfrac{a}{a-1} \right|

This should be the correct result. But I could also decompose the integral into two parts (because the integrand is a sum) and compute:

\int_{a}^{\infty} \left( \dfrac{1}{t} - \dfrac{1}{t-1} \right) ~ dt = \left| \log \vert t \vert \right|_{a}^{\infty} - \left[ \log \vert t - 1 \vert \right]_{a}^{\infty} = - \log \left| \dfrac{a}{a-1} \right| + \infty - \infty

But \infty - \infty is of course not defined!

Where did I make a mistake? I don't find it.
 
Physics news on Phys.org
Decomposing the integral into two parts is justified only if both integrals are finite.
 
Thanks :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top