perpich08 said:
Im am not sure what the integral of the heaviside function is?
Use integration by parts and the fact that h'(x - x_{0}) = \delta(x - x_{0}):
<br />
\int_{a}^{b}{h(x - x_{0}) \, dx} = \left. x \, h(x - x_{0}) \right|^{b}_{a} - \int_{a}^{b}{x \, \delta(x - x_{0}) \, dx}<br />
Next, the integral with the Dirac delta-function can be evaluated using its property:
<br />
\int_{a}^{b}{x \, \delta(x - x_{0}) \, dx} = x_{0} \, h(x_{0} - a) \, h(b - x_{0})<br />
where the product of the two Heaviside functions ensures that x_{0} is inside the segment x_{0} \in \left[a, b \right]. The integrated-out part is:
<br />
b \, h(b - x_{0}) - a \, h(a - x_{0})<br />
Combining everything together gives:
<br />
\int_{a}^{b}{h(x - x_{0}) \, dx} = b \, h(b - x_{0}) - a \, h(a - x_{0}) - x_{0} \, h(x_{0} - a) \, h(b - x_{0})<br />