Problems figuring out this inductance formula

  • Thread starter Thread starter johnboyman
  • Start date Start date
  • Tags Tags
    Formula Inductance
AI Thread Summary
The discussion revolves around understanding the inductance formula I= 1/L∫Vdt, specifically how to determine the current flowing across an inductor given a voltage waveform. Participants clarify that when dealing with AC current, the choice between sine and cosine functions depends on the phase of the waveform. The example provided illustrates the integration process, showing how the transition from cosine to sine occurs due to the properties of integrals. Additionally, an alternate formula for inductors is mentioned, emphasizing the relationship between voltage and the rate of change of current. Overall, the conversation highlights the importance of grasping integral calculus concepts to fully understand the calculations involved.
johnboyman
Messages
22
Reaction score
2
TL;DR Summary
I have questions about the I= 1/L∫Vdt formula
Hello. I am working this formula. I= 1/L∫Vdt . The following website have the best explanation of it.

http://www.learningaboutelectronics.com/Articles/Inductor-current-calculator.php

I am confused with a few things about it. One is that this website says If the current is Ac then the value will be a sine or a cosine waveform. How do I know which one to choose. I don't want to just pick one at random.

This example on this site looks like the following. This equation switched from cos to sin and when it does that's where it looses me.
What is the current flowing across an inductor if the voltage is 5cos(60t) and the inductance is 5H?

V= 1/L∫Vdt= (1/5H)∫(5cos(60t))= (5/300)sin(60t) A

So the current flowing across the inductor is (5/300)cos(60t) A.

I do not understand the steps that were taken to get this this final result. I hope someone has some advice thanks.
 
Engineering news on Phys.org
Have you studied any calculus yet?

The example you cited looks good to me. Honestly, I don't really know how to simplify the solution beyond:

1) I = (1/L)⋅∫v(t)⋅dt
2) v(t) = 5⋅cos(60t), L = 5
=> I = (1/5)⋅∫5⋅cos(60t)⋅dt = ∫cos(60t)⋅dt = sin(60t)/60
 
  • Like
Likes johnboyman
I have studied some calculus.
Where did (1/5)⋅∫5⋅ go in the beginning of the equation and in the end how did you go from cos to sin and where did /60 come from? Sorry to to ask, i have gaps in my math.
I = (1/5)⋅∫5⋅cos(60t)⋅dt = ∫cos(60t)⋅dt = sin(60t)/60
 
 
  • Like
Likes johnboyman
For now, until you have studied more math, I would just memorize the formulas:
∫sin(ω⋅t)⋅dt = -(1/ω)⋅cos(ω⋅t) and ∫cos(ω⋅t)⋅dt = (1/ω)⋅sin(ω⋅t).

To learn more about these formulas, I would look for explanations of integral calculus. Khan Academy or 3Blue1Brown are good sources.

 
  • Like
Likes johnboyman
Thanks alot
 
There is an alternate formula for how an inductor works, which I personally prefer. It is v(t) = L⋅(di(t)/dt) where di/dt is the derivative of the current. The derivative is the rate of change, or the slope (vs. time) of the current.

It's just two different ways of explaining the same physical phenomenon, so don't worry if it's confusing. You may prefer one version vs. the other.
 
  • Like
Likes Windadct and johnboyman
DaveE said:
=> I = (1/5)⋅∫5⋅cos(60t)⋅dt = ∫cos(60t)⋅dt = sin(60t)/60
Yeah, confusing. The change from "∫cos(60t)⋅dt" to "sin(60t)/60" works because sin and cos are integrals, and derivitives, of each other.

You can see that if you sketch a sin wave and then sketch a cos wave below it. You will note that the inflection point (peak) of one is at the Zero crossing of the other.

Cheers,
Tom
 
  • Like
Likes johnboyman
Back
Top